Уравнение прямой с угловым коэффициентом
Уравнение прямой с угловым коэффициентом. Прямая линия, пересекающая ось Oy в точке и образующая угол с положительным направлением оси Ox:
?????
Э́ллипс (др.-греч. ἔλλειψις — опущение, недостаток, в смысле недостатка эксцентриситета до 1) — геометрическое место точек MЕвклидовой плоскости, для которых сумма расстояний до двух данных точек F1 и F2 (называемых фокусами) постоянна и больше расстояния между фокусами, то есть
| F1M | + | F2M | = 2a, причем | F1F2 | < 2a.
Гипе́рбола (др.-греч. ὑπερβολή, от др.-греч. βαλειν — «бросать», ὑπερ — «сверх») — геометрическое место точек M Евклидовой плоскости, для которых абсолютное значение разности расстояний от M до двух выделенных точек F1 и F2 (называемых фокусами) постоянно. Точнее,
причем | F1F2 | > 2a > 0.
Пара́бола (греч. παραβολή — приложение) — геометрическое место точек, равноудалённых от данной прямой (называемойдиректрисой параболы) и данной точки (называемой фокусом параболы).
- 1.Ассоциативность;
- Свойства обратной матрицы
- Описание метода
- Вектор в линейном пространстве
- Операции над векторами
- Вектор с координатами (-b,a) или (b,-a) называется направляющим вектором. Уравнения прямой на плоскости
- Общее уравнение прямой
- Уравнение прямой с угловым коэффициентом
- Классификация кривых второго порядка
- Вырожденные кривые
- Примеры
- 19) Однородные системы
- Примеры
- Описание