Линейка
Классификация кривых второго порядка
Невырожденные кривые
Кривая второго порядка называется невырожденной, если Могут возникать следующие варианты:
Невырожденная кривая второго порядка называется центральной, если
эллипс — при условии D > 0 и ΔI < 0;
частный случай эллипса — окружность — при условии I2 = 4D или a11 = a22,a12 = 0;
мнимый эллипс (ни одной вещественной точки) — при условии ΔI > 0;
гипербола — при условии D < 0;
Невырожденная кривая второго порядка называется нецентральной, если ΔI = 0
парабола — при условии D = 0.
Содержание
- 1.Ассоциативность;
- Свойства обратной матрицы
- Описание метода
- Вектор в линейном пространстве
- Операции над векторами
- Вектор с координатами (-b,a) или (b,-a) называется направляющим вектором. Уравнения прямой на плоскости
- Общее уравнение прямой
- Уравнение прямой с угловым коэффициентом
- Классификация кривых второго порядка
- Вырожденные кривые
- Примеры
- 19) Однородные системы
- Примеры
- Описание