§5. Функциональные ряды
1. Пусть дана бесконечная последовательность функций . независимой переменнойх, имеющих общую область определения D. Ряд
называется функциональным рядом.
Примеры
1) ;
2) ;
3) .
Для каждого значения функциональный ряд превращается в числовой ряд, сходящийся или расходящийся.
Значение , при котором функциональный ряд сходится, называется точкой сходимости функционального ряда. Множество всех точек сходимости функционального ряда называется областью сходимости этого ряда. Область сходимости обозначим .
Так, для первого из приведённых примеров область сходимости – интервал (-1, 1); для второго - ряда Дирихле - область сходимости - полуось х>0; третий ряд абсолютно сходится в любой точке х, так как при любом х справедливо ; следовательно, область сходимости третьего ряда).
Типовой пример
Найти область сходимости ряда
►Интервал сходимости можно найти, применяя признак Даламбера или Коши к ряду, составленному из абсолютных величин членов исходного ряда. Здесь Вычислим предел
По признаку Даламбера для сходимости ряда предел должен быть меньше 1. Имеем . Исследуем сходимость ряда на концах промежутка. Еслиx = 4, то получим ряд . Он сходится и притом абсолютно, т.к. этот ряд ведет себя как ряд. Еслиx = 2, то получим ряд . Он сходится и притом абсолютно, т.к. сходится ряд из абсолютных величин его членов. Окончательно получим, что область сходимости исследуемого ряда отрезок [2;4]. ◄
Для каждого мы получаем сходящийся числовой ряд, свой для каждого х, поэтому сумма функционального ряда есть функция , определённая на области . Так, для первого примера, как мы знаем, , т.е. на интервале (-1, 1); вне этого интервала равенство не имеет места; так, в точке х=2 ряд расходится, а . Сумма второго ряда - знаменитая функция Римана , определённая на полуоси; эта функция играет важную роль в теории чисел. Сумма третьего ряда, равна функции периода, получающаяся в результате периодического повторения функции, определённой на отрезке, по всей числовой оси.
Сумма функционального ряда - функция, встаёт вопрос о свойствах этой функции. Так, члены ряда могут иметь свойства непрерывности, дифференцируемости, интегрируемости и т.д. Будет ли обладать этими свойствами сумма ряда? Сумма ряда сохраняет хорошие свойства своих членов в том случае, если ряд сходится равномерно.
Yandex.RTB R-A-252273-3- §1. Числовые ряды. Свойства сходящихся рядов
- §2. Ряды с неотрицательными членами
- §3. Знакопеременные ряды.
- 3. Свойства сходящихся рядов
- §5. Функциональные ряды
- 2. Равномерная сходимость функционального ряда
- 3. Свойства равномерно сходящихся рядов
- 1. Теорема о непрерывности суммы равномерно сходящегося ряда непрерывных функций
- 2. Теорема о почленном интегрировании равномерно сходящегося ряда
- 3. Теорема о почленном дифференцировании равномерно сходящегося ряда
- 4. Степенные ряды
- 5. Ряд Тейлора
- 6. Разложение в ряд Маклорена элементарных функций
- 7. Решение задач на разложение функций в ряд
- 8. Приближённое вычисление значений функций
- 9.Интегрирование функций
- 10. Интегрирование дифференциальных уравнений с помощью степенных рядов
- 11. Ряды Фурье
- Вопросы промежуточного контроля