РЯДЫ (РАБ
2. Теорема о почленном интегрировании равномерно сходящегося ряда
Пусть члены функционального ряда непрерывны на отрезке , и ряд равномерно сходится к своей сумме на этом отрезке: . Тогда , т.е. интеграл от суммы ряда равен сумме ряда, составленного из интегралов от членов равномерно сходящегося ряда.
Yandex.RTB R-A-252273-3Содержание
- §1. Числовые ряды. Свойства сходящихся рядов
- §2. Ряды с неотрицательными членами
- §3. Знакопеременные ряды.
- 3. Свойства сходящихся рядов
- §5. Функциональные ряды
- 2. Равномерная сходимость функционального ряда
- 3. Свойства равномерно сходящихся рядов
- 1. Теорема о непрерывности суммы равномерно сходящегося ряда непрерывных функций
- 2. Теорема о почленном интегрировании равномерно сходящегося ряда
- 3. Теорема о почленном дифференцировании равномерно сходящегося ряда
- 4. Степенные ряды
- 5. Ряд Тейлора
- 6. Разложение в ряд Маклорена элементарных функций
- 7. Решение задач на разложение функций в ряд
- 8. Приближённое вычисление значений функций
- 9.Интегрирование функций
- 10. Интегрирование дифференциальных уравнений с помощью степенных рядов
- 11. Ряды Фурье
- Вопросы промежуточного контроля