16. Объем тела вращения с заданным поперечным сечением
П усть вокруг оси Ox вращается криволинейная трапеция, ограниченная непрерывной линией отрезком и прямыми x=a и x=b. Полученная от вращения фигура называется телом вращения. Сечение этого тела плоскостью, перпендикулярной оси Ox, проведенной через произвольную точку x оси Ox ( ), есть круг с радиусом . Следовательно, .
Применяя формулу объема тела по площади параллельных сечений ( ), получаем
(1)
Если криволинейная трапеция ограничена графиком непрерывной функции и прямыми x=0, y=c, y=d (c<d), то объем тела, образованного вращением этой трапеции вокруг оси Oy, по аналогии с формулой (1), равен 17. Понятие несобственного интеграла I рода
Пусть функция непрерывна на промежутке . Если существует конечный предел то его называют несобственным интегралом первого рода и обозначают .
Таким образом, по определению
В этом случае говорят, что несобственный интеграл сходится. Если же указанный предел не существует или он бесконечен, то говорят, что интеграл расходится.
Аналогично определяется несобственный интеграл на промежутке :
Несобственный интеграл с двумя бесконечными пределами определяется формулой
где c – произвольное число. В этом случае интеграл слева сходится лишь тогда, когда сходятся оба интеграла справа. Если непрерывная функция на промежутке и интеграл сходится, то он выражает площадь бесконечно длинной криволинейной трапеции
- 1. Задача, о площади криволинейной трапеции приводящая к понятию определенного интеграла.
- 2. Классы интегрируемых функций.
- 3. Теорема об определенном интеграле с переменным верхним пределом
- 4. Теорема Лейбница – Ньютона.
- 5. Теорема об интегрировании по частям
- 6. Теорема о замене переменной в определенном интеграле
- 7. Вывод формулы вычисления площади плоской фигуры (в декартовой системе координат)
- 8. Вывод формулы вычисления длины дуги (в декартовой системе координат)
- 9. Вывод формулы вычисления объема тела вращения относительно оси ox и oy (в декартовой системе координат).
- 10. Теорема об абсолютной сходимости несобственного интеграла 1-го рода
- 11. Сформулируйте и докажите свойства решений олду.
- 12. Теорема о равенстве нулю вронскиана линейно-зависимых функций (необх. Усл. Л.З.).
- 13. Теорема о структуре общего решения лоду
- 14. Теорема о структуре общего решения лнду
- 15. Теорема о суперпозиции решений (принцип сложения решений)
- 16. Метод вариации произвольных постоянных – метод Лагранжа
- 17. Необходимый признак сходимости.
- 18. Критерий сходимости рядов с неотрицательными членами.
- 19. Предельный признак сравнения для рядов с неотрицательными членами.
- 20. Признак Даламбера.
- 21. Радикальный признак Коши.
- 22. Абсолютная и условная сходимость. Достаточный признак сходимости знакопеременных рядов.
- 23. Степенные ряды. Теорема Абеля. Радиус сходимости.
- 24.Тригонометрический ряд Фурье. Нахождение коэффициентов для четных и нечетных функций.
- 25. Нахождение коэффициентов для тригонометрического р. Фурье (теорему док).
- 1. Понятие первообразной. Свойства первообразной.
- 2. Понятие неопределенного интеграла. Свойства неопределенного интеграла.
- 3. Методы вычисления неопределенного интеграла: метод подстановки (замены переменной),
- 4.Интегрирование рациональных функций.
- 7. Интегрирование иррациональных функций.
- 9. Понятие интегральной суммы.
- 10. Понятие определённого интеграла. Геометрический смысл определенного интеграла
- 11. Необходимый признак интегрируемости функции по Риману. Функция Дирихле.
- 12. Свойства определенного интеграла. Теорема о среднем.
- 13. Свойства линейности и аддитивности определённого интеграла.
- 14. Свойства определенного интеграла, выраженные неравенствами
- 15. Интегралы с переменным верхним пределом.
- 16. Объем тела вращения с заданным поперечным сечением
- 18. Понятие несобственного интеграла II рода
- 19. 20. Признаки сравнения (для несобственного интеграла I и II рода.)
- 21. Свойства определенного интеграла от чет. И нечт. Функции на симметричном промежутке.
- 22. Понятие общего решения дифференциального уравнения первого порядка, частное решение, начальные условия, задача Коши.
- 2 3. Теорема о существовании и единственности решения ду в полных дифференциалах.
- 24. О пределитель Вронского.
- 25. Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Вид частных решений, характеристическое уравнение
- 26.Теорема о существовании и единственности решения задачи Коши д.У. Порядка выше первого.
- 27. Числовой ряд. Основные понятия и определения: определение числового ряда, n-ой
- 28. Интегральный признак Коши.
- 29. Знакочередующиеся ряды. Теорема Лейбница.
- 30. Равномерная сходимость функционального ряда.
- 31. Теорема и признак Вейерштрасса:
- 32. Свойство равномерно сходящихся функциональных рядов.
- 33. Ортогональная система функций:
- 34. Теорема Дирихле. Условия Дирихле.
- 35. Степенные ряды. Область сходимости. Радиус сходимости.
- 36. Ряд Тейлора, область сходимости. Достаточный признак сходимости ряда Тейлора.
- 37. Ряды Маклорена
- 38. Тригонометрический ряд Фурье