9. Вывод формулы вычисления объема тела вращения относительно оси ox и oy (в декартовой системе координат).
Пусть задано тело, ограниченное замкнутой поверхностью, известно S любого сечения плоскостью, перпендик. к OX –(поперечное)
1 . Разбив отрезок [a,b] на n частей a=Xₒ<X₁<X₂...<Xn=b
Обозначим ΔXk=Xk-Xk-1 , k=1,n
λ=max[a,b]{ΔXk}, через xk проводим поперечное сечение
2. Выберем ξk [xk-1, xk] произвольно и найдем S(ξk); каждый слой тела Т представляет собой цилиндр с основанием S(ξk) и высотой ΔXk
ΔVk= S(ξk) ΔXk
V=
V =
Вычисление объема тела вращения: Рассмотрим тело, образованное вращением вокруг оси Ox криволинейной трапеции aABb ограниченной кривой y=f(x), осью Ox и x = a, y = b
1. Рассмотрим произвольное разбиение [a,b] x0 = a < x1< x2<… < xn = b
обозначим Δxk = xk-xk-1
2. Пересекаем тело вращения плоскостями перпендикулярными Ox и получи круги, радиусы которых равны |yk|=|f(xk)| На каждом [xk-1- xk] выберем произвольным образом ξk S(ξk)= πf2(ξk) (S=πR2)
3. Предположим на любом частном отрезке ф-ия S=S(x) совпадает с S(ξk). Тогда объем частичного цилиндра: ΔVk = S(ξk)Δxk = πf2(ξk)Δxk
4.
- 1. Задача, о площади криволинейной трапеции приводящая к понятию определенного интеграла.
- 2. Классы интегрируемых функций.
- 3. Теорема об определенном интеграле с переменным верхним пределом
- 4. Теорема Лейбница – Ньютона.
- 5. Теорема об интегрировании по частям
- 6. Теорема о замене переменной в определенном интеграле
- 7. Вывод формулы вычисления площади плоской фигуры (в декартовой системе координат)
- 8. Вывод формулы вычисления длины дуги (в декартовой системе координат)
- 9. Вывод формулы вычисления объема тела вращения относительно оси ox и oy (в декартовой системе координат).
- 10. Теорема об абсолютной сходимости несобственного интеграла 1-го рода
- 11. Сформулируйте и докажите свойства решений олду.
- 12. Теорема о равенстве нулю вронскиана линейно-зависимых функций (необх. Усл. Л.З.).
- 13. Теорема о структуре общего решения лоду
- 14. Теорема о структуре общего решения лнду
- 15. Теорема о суперпозиции решений (принцип сложения решений)
- 16. Метод вариации произвольных постоянных – метод Лагранжа
- 17. Необходимый признак сходимости.
- 18. Критерий сходимости рядов с неотрицательными членами.
- 19. Предельный признак сравнения для рядов с неотрицательными членами.
- 20. Признак Даламбера.
- 21. Радикальный признак Коши.
- 22. Абсолютная и условная сходимость. Достаточный признак сходимости знакопеременных рядов.
- 23. Степенные ряды. Теорема Абеля. Радиус сходимости.
- 24.Тригонометрический ряд Фурье. Нахождение коэффициентов для четных и нечетных функций.
- 25. Нахождение коэффициентов для тригонометрического р. Фурье (теорему док).
- 1. Понятие первообразной. Свойства первообразной.
- 2. Понятие неопределенного интеграла. Свойства неопределенного интеграла.
- 3. Методы вычисления неопределенного интеграла: метод подстановки (замены переменной),
- 4.Интегрирование рациональных функций.
- 7. Интегрирование иррациональных функций.
- 9. Понятие интегральной суммы.
- 10. Понятие определённого интеграла. Геометрический смысл определенного интеграла
- 11. Необходимый признак интегрируемости функции по Риману. Функция Дирихле.
- 12. Свойства определенного интеграла. Теорема о среднем.
- 13. Свойства линейности и аддитивности определённого интеграла.
- 14. Свойства определенного интеграла, выраженные неравенствами
- 15. Интегралы с переменным верхним пределом.
- 16. Объем тела вращения с заданным поперечным сечением
- 18. Понятие несобственного интеграла II рода
- 19. 20. Признаки сравнения (для несобственного интеграла I и II рода.)
- 21. Свойства определенного интеграла от чет. И нечт. Функции на симметричном промежутке.
- 22. Понятие общего решения дифференциального уравнения первого порядка, частное решение, начальные условия, задача Коши.
- 2 3. Теорема о существовании и единственности решения ду в полных дифференциалах.
- 24. О пределитель Вронского.
- 25. Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Вид частных решений, характеристическое уравнение
- 26.Теорема о существовании и единственности решения задачи Коши д.У. Порядка выше первого.
- 27. Числовой ряд. Основные понятия и определения: определение числового ряда, n-ой
- 28. Интегральный признак Коши.
- 29. Знакочередующиеся ряды. Теорема Лейбница.
- 30. Равномерная сходимость функционального ряда.
- 31. Теорема и признак Вейерштрасса:
- 32. Свойство равномерно сходящихся функциональных рядов.
- 33. Ортогональная система функций:
- 34. Теорема Дирихле. Условия Дирихле.
- 35. Степенные ряды. Область сходимости. Радиус сходимости.
- 36. Ряд Тейлора, область сходимости. Достаточный признак сходимости ряда Тейлора.
- 37. Ряды Маклорена
- 38. Тригонометрический ряд Фурье