Полугруппы, группы, решетки
Алгебра с одной бинарной ассоциативной операцией называется полугруппой. Эта операция обычно называется умножением и обозначается илиab. Такая запись называется мультипликативной. В частности аа обозначается как ,ааа как и т. д. В общем случае.Полугруппа называется коммутативной, если операция умножения коммутативна. Если полугруппа содержит такой элемент е, что для любого а выполняется , то такой элемент называетсяединицей. Полугруппа с единицей называется моноидом.
Пример 1.
Множество действительных чисел с операцией умножения является полугруппой с единицей. Здесь е = 1.
Утверждение 1.
Единица в полугруппе всегда единственна.
Группой называется полугруппа с единицей, в которой для каждого элемента а существует обратный элемент , удовлетворяющий условию.
Утверждение 2.
Для каждого элемента а в группе существует единственный обратный элемент .
Число элементов группы называется порядком группы. Группа называется абелевой, если операция группы коммутативна. Группа, все элементы которой является степенями одного и того же элемента а, называется циклической.
Утверждение 3.
Циклическая группа всегда абелева.
Пример 2.
Множество целых чисел с операцией сложения является циклической.
Пример 3.
Множество целых чисел с операцией сложения является абелевой группой. Единицей по сложению является . Для каждого числасуществует обратный (здесь:противоположный) – z < 0. И наоборот. Для числа 0 противоположным является число 0.
Множество, на котором кроме операций заданы отношения называется алгебраической системой. Таким образом, алгебра является частным случаем алгебраической системы.
Рассмотрим частный случай алгебраической системы – решетку.
Пусть дано частично-упорядоченное множество М. Отношение порядка в общем случае будем обозначать .Верхней гранью элементов а и b из М называется элемент , такой чтои.Нижней гранью элементов а и b из М называется элемент, такой чтои. В общем случае для некоторых элементова и b нижняя грань может не существовать или не быть единственной.
Решеткой называется частично упорядоченной множество, в котором для любых двух элементов а и b существует и единственна наибольшая нижняя грань, обозначаемая инаименьшая верхняя грань, обозначаемая . Таким образом решетка – это алгебраическая система видас одним бинарным отношением и одной бинарной операцией.
Пример 4.
Любое полностью упорядоченное множество (например, множество целых чисел) можно превратить в решетку, определив для любых а и b из М ;.
- Дискретная математика
- Содержание
- Глава 1. Теория множеств. Дискретная теория вероятности......5
- Глава 2. Теория графов.....................................................................50
- Глава 3. Дискретные структуры: конечные автоматы, коды...73
- Глава 4. Алгебра логических функций..........................................85
- Глава 5. Логика высказываний и логика предикатов..............106
- Упражнения
- 1.2. Векторы и прямые произведения множеств. Проекция вектора на ось
- Упражнения
- 1.3. Комбинаторика Правило суммы
- Правило произведения
- Число размещений без повторений
- Число размещений с повторениями
- Число перестановок без повторений
- Число сочетаний без повторений
- Упражнения
- 1.4. Введение в дискретную теорию вероятностей
- Свойства элементарных событий:
- Соотношения между событиями:
- Свойства операций над событиями:
- Аксиомы Колмогорова
- Свойства вероятности
- Классическое определение вероятности
- Упражнения
- 1.5. Соответствия и функции
- Взаимно однозначные соответствия и мощность множеств
- Упражнения
- 1.6. Отношения
- Способы задания бинарных отношений
- Свойства бинарных отношений
- Отношение эквивалентности
- Отношение порядка
- Лексико-графический порядок.
- Упражнения
- 1.7. Операции и алгебры
- Свойства бинарных алгебраических операций
- 1.8. Гомоморфизм и изоморфизм алгебр
- Полугруппы, группы, решетки
- Упражнения
- Глава 2. Теория графов
- 2.1. Основные определения, способы задания, основные классы, изоморфизм графов
- Способы задания графа
- Степени вершин графа
- Части, суграфы и подграфы
- Операции над частями графа
- Графы и бинарные отношения
- Упражнения
- Маршруты, цепи и циклы. Расстояния, диаметры, центры. Обходы. Разделяющие множества и разрезы
- Упражнения
- Деревья, их свойства. Характеристические числа графов. Сети
- Упражнения
- Глава 3. Дискретные структуры: конечные автоматы, коды
- 3.1. Машина Тьюринга
- Упражнения
- Основы теории кодирования
- Упражнения
- Глава 4. Алгебра логических функций
- 4.1. Основные определения
- Упражнения
- 4.2. Эквивалентные преобразования
- 1) ; 2);
- 1) ; 2).
- Упражнения
- 4.3. Дизъюнктивные и конъюнктивные нормальные формы
- Упражнения
- 4.4. Дизъюнктивные нормальные формы и импликанты
- Упражнения
- 4.5. Минимизация днф. Тупикова днф
- Упражнения
- 4.6. Алгебра Жегалкина
- Упражнения
- 4.7. Двойственность
- Принцип двойственности
- Упражнения
- 4.8. Функциональная полнота систем
- Упражнения
- Глава 5. Логика высказываний и логика предикатов
- 5.1. Логика высказываний
- Алгебра логики
- Исчисление высказываний
- Упражнения
- 5.2. Логика предикатов
- Упражнения
- Глава 6. Схемы переключателей. Комбинационные схемы
- Схемы переключателей
- Комбинационные схемы
- Упражнения
- Литература
- 650043, Кемерово, ул. Красная, 6.