Соотношения между событиями:
1. Если каждое появление события А сопровождается появлением события В, то говорят, что А влечет В, или А является частным случаем В, или В является следствием события А, или А благоприятствует В ( ). Если, то каждое элементарное событие, входящее вА, содержится в событии В.
2. События А и В называются равносильными (равными, эквивалентными) ( ), если они состоят из одних и тех же элементарных событий, т.е. всегда происходят или не происходят одновременно.
3. Суммой (объединением) событий А и В (или ) называется событие, которое состоит из элементарных событий, входящих хотя бы в одно из событийА и В, т. е. событие, происходящее тогда и только тогда, когда происходит хотя бы одно из событий А и В (или А или В)
Очевидно, что: ;,А + А = А.
4. Произведением (пересечением) двух событий А и В (АВ или ) называется событие, которое состоит из элементарных событий, входящих и в событиеА, и в событие В одновременно, т. е. событие, происходящее только тогда, когда происходит и событие А, и событие В.
Очевидно, что: ;;.
5. Два события называются несовместными, если их одновременное появление в опыте невозможно. Следовательно, если А и В несовместны, то АВ = .
Элементарные события попарно несовместны: при.
6. Событием, противоположным событию А () называется событие, которое состоит из всех элементарных событий, не входящих вА. Противоположное событие происходит тогда и только тогда, когда А не происходит.
Очевидно, что: ;.
7. Разностью событий А и В (или) называется событие, происходящее тогда и только тогда, когда происходит событие А и не происходит событие В.
Очевидно, что: ;.
8. События образуютполную группу событий, если .
- Дискретная математика
- Содержание
- Глава 1. Теория множеств. Дискретная теория вероятности......5
- Глава 2. Теория графов.....................................................................50
- Глава 3. Дискретные структуры: конечные автоматы, коды...73
- Глава 4. Алгебра логических функций..........................................85
- Глава 5. Логика высказываний и логика предикатов..............106
- Упражнения
- 1.2. Векторы и прямые произведения множеств. Проекция вектора на ось
- Упражнения
- 1.3. Комбинаторика Правило суммы
- Правило произведения
- Число размещений без повторений
- Число размещений с повторениями
- Число перестановок без повторений
- Число сочетаний без повторений
- Упражнения
- 1.4. Введение в дискретную теорию вероятностей
- Свойства элементарных событий:
- Соотношения между событиями:
- Свойства операций над событиями:
- Аксиомы Колмогорова
- Свойства вероятности
- Классическое определение вероятности
- Упражнения
- 1.5. Соответствия и функции
- Взаимно однозначные соответствия и мощность множеств
- Упражнения
- 1.6. Отношения
- Способы задания бинарных отношений
- Свойства бинарных отношений
- Отношение эквивалентности
- Отношение порядка
- Лексико-графический порядок.
- Упражнения
- 1.7. Операции и алгебры
- Свойства бинарных алгебраических операций
- 1.8. Гомоморфизм и изоморфизм алгебр
- Полугруппы, группы, решетки
- Упражнения
- Глава 2. Теория графов
- 2.1. Основные определения, способы задания, основные классы, изоморфизм графов
- Способы задания графа
- Степени вершин графа
- Части, суграфы и подграфы
- Операции над частями графа
- Графы и бинарные отношения
- Упражнения
- Маршруты, цепи и циклы. Расстояния, диаметры, центры. Обходы. Разделяющие множества и разрезы
- Упражнения
- Деревья, их свойства. Характеристические числа графов. Сети
- Упражнения
- Глава 3. Дискретные структуры: конечные автоматы, коды
- 3.1. Машина Тьюринга
- Упражнения
- Основы теории кодирования
- Упражнения
- Глава 4. Алгебра логических функций
- 4.1. Основные определения
- Упражнения
- 4.2. Эквивалентные преобразования
- 1) ; 2);
- 1) ; 2).
- Упражнения
- 4.3. Дизъюнктивные и конъюнктивные нормальные формы
- Упражнения
- 4.4. Дизъюнктивные нормальные формы и импликанты
- Упражнения
- 4.5. Минимизация днф. Тупикова днф
- Упражнения
- 4.6. Алгебра Жегалкина
- Упражнения
- 4.7. Двойственность
- Принцип двойственности
- Упражнения
- 4.8. Функциональная полнота систем
- Упражнения
- Глава 5. Логика высказываний и логика предикатов
- 5.1. Логика высказываний
- Алгебра логики
- Исчисление высказываний
- Упражнения
- 5.2. Логика предикатов
- Упражнения
- Глава 6. Схемы переключателей. Комбинационные схемы
- Схемы переключателей
- Комбинационные схемы
- Упражнения
- Литература
- 650043, Кемерово, ул. Красная, 6.