Машинные методы умножения чисел в прямых кодах
Операция умножения состоит из ряда последовательных сложений. Сложением управляют разряды множителя: если в очередном разряде множителя содержится единица, то к сумме добавляется множимое. При этом, в зависимости от метода умножения, выполняется сдвиг либо множимого, либо частичной суммы. Наряду с этим умножение можно начинать как с младших, так и со старших разрядов множителя.
Введем некоторые обозначения, используемые ниже: - частичное произведение, - частичная сумма.
Ниже приводится схема четырех алгоритмов умножения .
Остановимся более подробно на реализации умножении согласно алгоритму А.
Представим Мн= А = 0,а1а2…аn
Мт= B = 0,b1b2….bn = b12-1+b22-2+…+bn2-n+bn2-n.
Мн∙Мт = С=А∙В= 0,а1а2…аn ( b12-1+b22-2+…+bn2-n)=
=0+(b1∙0,а1а2…аn)2-1+…+(bn-1∙0,а1а2…аn)2-(n-1)+(bn∙0,а1а2…аn)2-n=
=0+b1∙A2-1+…+bn-1∙A2-(n-1)+…+bn∙A2-n=0+bn∙A2-n+bn-1∙A2-(n-1)+…+b1∙A2-1=
=(…((0+bn∙A)2-1+bn-1∙A)2-1+…+b1∙A)2-1
Ниже приведены (без вывода) остальные три реализации алгоритмов (Б, В и Г) умножения.
Мн∙Мт = С=А∙В = (0+bn∙A+bn-1∙A∙22+…+b1∙A∙2n-1)2-n (алгоритм Б)
Мн∙Мт = С=А∙В = (…(0+b1∙A) ∙21+b2∙A)∙21+…+bn∙A)∙2-n (алгоритм В)
Мн∙Мт = С=А∙В = 0+b1∙A∙2-1+b2∙A∙2-2+…+bn∙A∙2-n (алгоритм Г)
Структурные схемы операционных устройств, выполняющих умножение по алгоритмам А,Б,В и Г приведены на рис 7.
Рассмотрим пример умножения чисел согласно алгоритму А.
Пример: МH = 0,1011
b1 … b4 4
0,0000 начальное содержимое сумматора
0,1011 = Мн ∙ b4 первое частичное произведение
0,1011 первая частичная сумма
0,0101 1 ∙ 2-1 сдвиг первой частичной суммы
0,0000 = Мн ∙ b3 второе частичное произведение
0,0101 1 вторая частичная сумма
0,0010 11 ∙ 2-1 сдвиг второй частичной суммы
0,1011 = Мн ∙ b2 третье частичное произведение
0,1101 11 третья частичная сумма
0,0110 111 ∙ 2-1 сдвиг третьей частичной суммы
0,1011 = Мн ∙ b1 четвертое частичное произведение
1,0001 111 (возникло переполнение)
0,1000 1111 ∙ 2-1 сдвиг для получения верного результата Мн∙Мт
Заметим, что при умножении чисел по алгоритму А на отдельных этапах операции возможно переполнение (попадание значащей единицы в знаковый разряд). Однако при последующем сдвиге переполнение устраняется. При использовании других алгоритмов (Б, В, Г) переполнения не возникает.
Время умножения чисел по алгоритму А tумн = ( tсл + tсдв ) n, где n - число разрядов Мт. Следовательно, сдвиг и сложение нельзя выполнять в одном автоматном такте. Это наглядно показано на рис 6.
Yandex.RTB R-A-252273-3
- Арифметические и логические основы вычислительной техники учебное пособие
- Введение
- Арифметические основы вычислительной техники Системы счисления
- Двоичная система счисления
- Восьмеричная система счисления
- Шестнадцатеричная система счисления
- Критерии выбора системы счисления
- Перевод чисел из одной системы счисления в другую
- Перевод целых чисел.
- Перевод правильных дробей.
- Перевод чисел из системы счисления в систему счисления основания которых кратны степени 2
- Кодирование чисел
- Переполнение разрядной сетки
- Модифицированные коды
- Машинные формы представления чисел.
- Погрешность выполнения арифметических операций
- Округление
- Нормализация чисел
- Последовательное и параллельное сложение чисел
- Сложение чисел с плавающей запятой
- Машинные методы умножения чисел в прямых кодах
- Ускорение операции умножения
- Умножение с хранением переносов
- Умножение на два разряда множителя одновременно.
- Умножение на четыре разряда одновременно.
- Умножение в дополнительных кодах.
- Умножение на 2 разряда Мт в дополнительных кодах.
- Матричные методы умножения.
- Машинные методы деления
- Деление чисел в прямых кодах.
- Деление чисел в дополнительных кодах.
- Методы ускорения деления.
- Двоично-десятичные коды
- Суммирование чисел с одинаковыми знаками в коде 8421.
- Сложение чисел с разными знаками.
- Двоично-десятичные коды с избытком 3
- Код с избытком 6 для одного из слагаемых
- Система счисления в остаточных классах (сок)
- Представление отрицательных чисел в сок
- Контроль работы цифрового автомата
- Некоторые понятия теории кодирования
- Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
- Коды Хемминга
- Логические основы вычислительной техники Двоичные переменные и булевы функции
- Способы задания булевых функций
- Основные понятия алгебры логики
- Основные законы алгебры логики
- Формы представления функций алгебры логики
- Системы функций алгебры логики
- Минимизация фал
- Метод Квайна
- Метод Блейка - Порецкого
- Метод минимизирующих карт Карно (Вейча)
- Минимизация коньюнктивных нормальных форм.
- Минимизация не полностью определенных фал
- Кубическое задание функций алгебры логики.
- Метод Квайна-Мак Класки
- Алгоритм извлечения (Рота)
- Минимизация фал методом преобразования логических выражений
- Применение правил и законов алгебры логики к синтезу некоторых цифровых устройств Синтез одноразрядного полного комбинационного сумматора
- Синтез одноразрядного комбинационного полусумматора
- Синтез одноразрядного полного комбинационного сумматора на двух полусумматорах
- Синтез одноразрядного комбинационного вычитателя
- Объединенная схема одноразрядного комбинационного сумматора-вычитателя
- Триггер со счетным входом как полный одноразрядный сумматор
- Введение в теорию конечных автоматов Основные понятия теории автоматов
- Способы задания автоматов
- Структурный автомат
- Память автомата
- Канонический метод синтеза
- Пример синтеза мпа Мили по гса
- Синхронизация автоматов
- Литература
- 220013, Минск, п.Бровки, 6.