Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
Рассмотрим возможность использования дополнительных (контрольных) разрядов для обнаружения и исправления ошибок. Эта возможность заключается в том, что к n информационным разрядам добавляется один контрольный разряд. В него записывается 0 или 1 таким образом, чтобы для каждого из передаваемых чисел сумма разрядов по модулю 2 была бы равна 0 (кодирование по методу четности) или 1 (нечетности).Появление ошибки в числе обнаружится по нарушению четности или нечетности. При этом виде кодирования допускается возможность выявления только одиночной ошибки. Чтобы одна комбинация разрядов числа превратилась в другую без выявления ошибки, необходимо изменение четного (2, 4, 6 и так далее) числа разрядов одновременно. Пример реализации метода контроля по методу четности-нечетности приведен ниже в табл. 5.
Рассмотренный способ контроля по методу четности-нечетности может быть видоизменен для локализации (выявления места) ошибки в числе. Длинное число разбивается на группы разрядов, каждая из которых содержит k разрядов.
Таблица 5.
| Число | Контрольный разряд | Проверка (нечетности) |
|
| 11011011 | 1 | 0 |
|
| 01101101 | 1 | 1-ошибка |
|
| 11010101 | 0 | 0 |
|
| 10101001 | 1 | 0 |
|
| 01010111 | 0 | 0 |
|
Контрольные разряды выделяются всем группам по строкам и по столбцам согласно следующей схеме:
| a1 | a2 | a3 | A4 | a5 | k1 |
|
| a6 | a7 | a8 | a9 | a10 | k2 |
|
| a11 | a12 | a13 | a14 | a15 | k3 |
|
| a16 | a17 | a18 | a19 | a20 | k4 |
|
| a21 | a22 | a23 | a24 | a25 | k5 |
|
| k6 | k7 | k8 | k9 | k10 |
|
|
Если ошибка произошла в разряде as (единица изменилась на ноль или наоборот), то при проверке на четность (нечетность) сумма по i-й строке и j-му столбцу (на пересечении которых находится элемент as) изменится. Следовательно, можно зафиксировать нарушение четности (нечетности) по этой строке и столбцу. Это не только позволит обнаружить ошибку, но и локализовать ее место. Изменив значение разряда as на противоположное можно исправить возникшую ошибку.
Контроль по методу четности-нечетности используется для контроля записи и считывания информации, а также для выполнения арифметических операций.
Yandex.RTB R-A-252273-3- Арифметические и логические основы вычислительной техники учебное пособие
- Введение
- Арифметические основы вычислительной техники Системы счисления
- Двоичная система счисления
- Восьмеричная система счисления
- Шестнадцатеричная система счисления
- Критерии выбора системы счисления
- Перевод чисел из одной системы счисления в другую
- Перевод целых чисел.
- Перевод правильных дробей.
- Перевод чисел из системы счисления в систему счисления основания которых кратны степени 2
- Кодирование чисел
- Переполнение разрядной сетки
- Модифицированные коды
- Машинные формы представления чисел.
- Погрешность выполнения арифметических операций
- Округление
- Нормализация чисел
- Последовательное и параллельное сложение чисел
- Сложение чисел с плавающей запятой
- Машинные методы умножения чисел в прямых кодах
- Ускорение операции умножения
- Умножение с хранением переносов
- Умножение на два разряда множителя одновременно.
- Умножение на четыре разряда одновременно.
- Умножение в дополнительных кодах.
- Умножение на 2 разряда Мт в дополнительных кодах.
- Матричные методы умножения.
- Машинные методы деления
- Деление чисел в прямых кодах.
- Деление чисел в дополнительных кодах.
- Методы ускорения деления.
- Двоично-десятичные коды
- Суммирование чисел с одинаковыми знаками в коде 8421.
- Сложение чисел с разными знаками.
- Двоично-десятичные коды с избытком 3
- Код с избытком 6 для одного из слагаемых
- Система счисления в остаточных классах (сок)
- Представление отрицательных чисел в сок
- Контроль работы цифрового автомата
- Некоторые понятия теории кодирования
- Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
- Коды Хемминга
- Логические основы вычислительной техники Двоичные переменные и булевы функции
- Способы задания булевых функций
- Основные понятия алгебры логики
- Основные законы алгебры логики
- Формы представления функций алгебры логики
- Системы функций алгебры логики
- Минимизация фал
- Метод Квайна
- Метод Блейка - Порецкого
- Метод минимизирующих карт Карно (Вейча)
- Минимизация коньюнктивных нормальных форм.
- Минимизация не полностью определенных фал
- Кубическое задание функций алгебры логики.
- Метод Квайна-Мак Класки
- Алгоритм извлечения (Рота)
- Минимизация фал методом преобразования логических выражений
- Применение правил и законов алгебры логики к синтезу некоторых цифровых устройств Синтез одноразрядного полного комбинационного сумматора
- Синтез одноразрядного комбинационного полусумматора
- Синтез одноразрядного полного комбинационного сумматора на двух полусумматорах
- Синтез одноразрядного комбинационного вычитателя
- Объединенная схема одноразрядного комбинационного сумматора-вычитателя
- Триггер со счетным входом как полный одноразрядный сумматор
- Введение в теорию конечных автоматов Основные понятия теории автоматов
- Способы задания автоматов
- Структурный автомат
- Память автомата
- Канонический метод синтеза
- Пример синтеза мпа Мили по гса
- Синхронизация автоматов
- Литература
- 220013, Минск, п.Бровки, 6.