Память автомата
Под элементом памяти (триггером) подразумеваются простейшие схемы, которые предназначены для приема, хранения и передачи одного бита информации. Триггер имеет один или более входов и два выхода (прямой и инверсный). Выходные сигналы триггера зависят только от его состояния и изменяются только при смене состояния триггера. Таким образом, триггеры являются элементарными автоматами Мура (элементарными, так как они имеют только два устойчивых состояния). В основе любого триггера находится регенеративное кольцо из двух инверторов.
Триггеры можно классифицировать по следующим признакам:
1) по способу записи информации: несинхронизируемые (асинхронные) иесинхронизируемые (синхронные) триггеры. У асинхронных триггеров запись информации происходит под действием информационных сигналов, у синхронных под действием разрешающих сигналов;
2) по способу синхронизации: синхронные триггеры со статическим управлением записью, синхронные двухступенчатые триггеры, синхронные триггеры с динамическим управлением записью;
3) по способу организации логических связей: триггеры с раздельной установкой состояния (RS-триггеры), триггеры со счетным входом (Т-триггеры), универсальные триггеры с раздельной установкой состояний (JK-триггеры), триггеры с приемом информации по одному входу (D-триггеры), комбинированные триггеры (RST-, JKRS-, DRS-триггеры и так далее), триггеры со сложной входной логикой.
Приняты следующие изображения входов триггеров:
S- раздельный вход установки триггера в единичное состояние по прямому выходу;
R- раздельный вход сброса триггера в нулевое состояние по прямому выходу;
Назначение входов J и K аналогичное входам R и S.
D- информационный вход. Используется для приема информации записываемой в триггер;
T- счетный вход;
С- вход синхронизации.
D-триггер. Принцип работы синхронного D-триггера основан на том, что сигнал на выходе после переключения, равен сигналу на входе D до переключения. Основное назначение D-триггера – задержка сигнала, поданного на вход D. D-триггеры могут быть построены по различным схемам. На рис. 38 приведена схема одноступенчатого D-триггера на элементах И-НЕ и его условное изображение.
В таблице 28 приведена информация работе D-триггера. Переключение состояний выполняется по формуле (t+1)= (t)С V DC.
T-триггер. Принцип работы синхронного D-триггера основан на том, что сигнал на выходе после переключения, равен сигналу на входе D до переключения. Основное назначение D-триггера – задержка сигнала, поданного на вход D. D-триггеры могут быть построены по различным схемам. На рис. 39 приведена схема одноступенчатого D-триггера на элементах И-НЕ и его условное изображение.
В таблице 29 приведена информация работе Т-триггера. Переключение состояний выполняется по формуле (t+1)= (t) T.
RS-триггеры. Асинхронные RS-триггеры являются наиболее простыми триггерами. Триггеры такого типа построены на двух логических элементах :2 ИЛИ-НЕ – триггер с прямыми входами (рис. 40 ) и 2 И-НЕ – триггер с инверсными входами. Выход каждого из логических элементов подключен к одному из входов другого элемента, что обеспечивает триггеру два устойчивых состояния.
Таблица 30 определяет переходы RS-триггера по формуле
(t+1)= (t)R V S.
Таблица 30. Состояния RS-триггера.
| R S
S | |||
00 | 01 | 10 | 11 | |
0 | 0 | 1 | 0 | x |
1 | 1 | 1 | 0 | x |
Возможны следующие режимы работы RS-триггера:
S=0, R=0 – режим хранения информации (значение триггера не изменяется);
S=0, R=1 – режим сброса (триггер всегда устанавливается в 0);
S=1, R=0 – режим записи логической единицы (триггер устанавливается в 1);
S=1, R=1 – запрещенная комбинация (значение триггера не неопределенное).
JK-триггеры. Асинхронный двухступенчатый JK-триггер строится на базе RS-триггера. JK-триггер имеет два информационных входа. Простейший JK-триггер можно получить из RS-триггера, если ввести дополнительные обратные связи с выходов триггера на входы, которые позволяют устранить неопределенность в таблице состояний. Логическая схема и условное обозначение JK-триггера приведены на рис. 41.
Таблица 31 определяет переходы JK-триггера согласно логической формулы (t+1)= (t)J V (t)K .
Таблица 31. Состояния JK-триггера.
| J K
S | |||
00 | 01 | 10 | 11 | |
0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 |
Возможны следующие режимы работы RS-триггера:
J=0, K=0 – режим хранения информации (значение триггера не изменяется);
J=0, K=1 – режим сброса (триггер всегда устанавливается в 0);
J=1, K=0 – режим записи логической единицы (триггер устанавливается в 1);
J=1, K=1 – режим инверсии содержимого триггера.
JK-триггер является универсальным триггером. Универсальность его состоит в том что он может выполнять функции RS-, T- и D-триггеров. Для получения D-триггера K вход соединяется со входом J через инвертор. T-триггер получается из JK-триггера путем объединения входов J и K в один, называемый T-входом. Если JK-триггер предварительно установлен в 0 и на вход не подается комбинация 11, то он работает как RS-триггер.
Yandex.RTB R-A-252273-3
- Арифметические и логические основы вычислительной техники учебное пособие
- Введение
- Арифметические основы вычислительной техники Системы счисления
- Двоичная система счисления
- Восьмеричная система счисления
- Шестнадцатеричная система счисления
- Критерии выбора системы счисления
- Перевод чисел из одной системы счисления в другую
- Перевод целых чисел.
- Перевод правильных дробей.
- Перевод чисел из системы счисления в систему счисления основания которых кратны степени 2
- Кодирование чисел
- Переполнение разрядной сетки
- Модифицированные коды
- Машинные формы представления чисел.
- Погрешность выполнения арифметических операций
- Округление
- Нормализация чисел
- Последовательное и параллельное сложение чисел
- Сложение чисел с плавающей запятой
- Машинные методы умножения чисел в прямых кодах
- Ускорение операции умножения
- Умножение с хранением переносов
- Умножение на два разряда множителя одновременно.
- Умножение на четыре разряда одновременно.
- Умножение в дополнительных кодах.
- Умножение на 2 разряда Мт в дополнительных кодах.
- Матричные методы умножения.
- Машинные методы деления
- Деление чисел в прямых кодах.
- Деление чисел в дополнительных кодах.
- Методы ускорения деления.
- Двоично-десятичные коды
- Суммирование чисел с одинаковыми знаками в коде 8421.
- Сложение чисел с разными знаками.
- Двоично-десятичные коды с избытком 3
- Код с избытком 6 для одного из слагаемых
- Система счисления в остаточных классах (сок)
- Представление отрицательных чисел в сок
- Контроль работы цифрового автомата
- Некоторые понятия теории кодирования
- Обнаружение и исправление одиночных ошибок путем использования дополнительных разрядов
- Коды Хемминга
- Логические основы вычислительной техники Двоичные переменные и булевы функции
- Способы задания булевых функций
- Основные понятия алгебры логики
- Основные законы алгебры логики
- Формы представления функций алгебры логики
- Системы функций алгебры логики
- Минимизация фал
- Метод Квайна
- Метод Блейка - Порецкого
- Метод минимизирующих карт Карно (Вейча)
- Минимизация коньюнктивных нормальных форм.
- Минимизация не полностью определенных фал
- Кубическое задание функций алгебры логики.
- Метод Квайна-Мак Класки
- Алгоритм извлечения (Рота)
- Минимизация фал методом преобразования логических выражений
- Применение правил и законов алгебры логики к синтезу некоторых цифровых устройств Синтез одноразрядного полного комбинационного сумматора
- Синтез одноразрядного комбинационного полусумматора
- Синтез одноразрядного полного комбинационного сумматора на двух полусумматорах
- Синтез одноразрядного комбинационного вычитателя
- Объединенная схема одноразрядного комбинационного сумматора-вычитателя
- Триггер со счетным входом как полный одноразрядный сумматор
- Введение в теорию конечных автоматов Основные понятия теории автоматов
- Способы задания автоматов
- Структурный автомат
- Память автомата
- Канонический метод синтеза
- Пример синтеза мпа Мили по гса
- Синхронизация автоматов
- Литература
- 220013, Минск, п.Бровки, 6.