logo
matan

27. Эйлеровы графы. Крит. Сущ-я эйлерова цикла в графе. Полуэйлеров граф. Задача о Кенигсбергских мостах.

Эйлеров путь (эйлерова цепь) в графе — это путь, проходящий по всем рёбрам графа и притом только по одному разу.

Эйлеров цикл — это эйлеров путь, являющийся циклом.

Эйлеров граф — граф, содержащий эйлеров цикл.

Эйлеров цикл/путь существуют только в связных графах или в графах, которые после удаления всех одиночных вершин превратятся в связные.

В неориентированном графе. Кроме того, согласно теореме, эйлеров цикл существует тогда и только тогда, когда граф связный и в нём отсутствуют вершины нечётной степени.

Эйлеров путь в графе существует тогда и только тогда, когда граф связный и содержит не более чем две вершины нечётной степени. Ввиду леммы о рукопожатиях, число вершин с нечётной степенью должно быть четным. А значит Эйлеров путь существует только тогда, когда это число равно нулю или двум. Причём когда оно равно нулю, эйлеров путь вырождается в эйлеров цикл.

В ориентированном графе.Ориентированный граф содержит эйлеров цикл тогда и только тогда, когда он сильно-связан и для каждой вершины графа её полустепень захода равна её полустепени исхода, то есть в вершину входит столько же ребер, сколько из неё и выходит.

Полуэйлеров граф — граф, содержащий эйлеров путь (цепь).

Задача о Кенигсбергских мостах. Однажды математику Леонарду Эйлеру был задан вопрос: можно ли обойти все семь мостов, стоявших тогда в городе Кёнигсберге (современный Калининград, Россия), побывав на каждом по одному разу? Рассмотрев эту задачу, в 1736 году Эйлер доказал, что это невозможно, причем он рассмотрел более общую задачу: какие местности, разделенные рукавами рек и соединенные мостами, возможно обойти, побывав на каждом мосту ровно один раз, а какие невозможно.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4