Тема 7. Закон больших чисел
Сущность закона больших чисел. Значение теорем закона больших чисел для математической статистики. Лемма Чебышева (неравенство Маркова). Неравенство Чебышева и его частные случаи: а) для средней арифметической случайных величин; б) для случайной величины, распределенной по биномиальному закону; в) для частости события. Теорема Чебышева и ее следствие. Теорема Бернулли. ([1], § 6.1–6.4).
Данная тема важна для понимания методов математической статистики. Она включает ряд теорем, устанавливающих при определенных условиях устойчивость частости (относительной частоты) и средней арифметической (теоремы Бернулли, Чебышева и др.). При изучении каждой из них важно уяснить условия их применимости, а также смысл утверждений, сопровождаемых словами «практически невозможно», «практически достоверно». Особое внимание следует уделить понятию «сходимости по вероятности».
При использовании неравенств Маркова и Чебышева в процессе решения задач необходимо учитывать, что:
1) приведенные неравенства дают не точное значение соответствующей вероятности, а лишь ее оценку снизу или сверху (вероятность не меньше (не больше) данного числа);
2) неравенство Чебышева оценивает вероятность отклонения случайной величины Х от ее математического ожидания M(X) = a.
Неравенство |X – a| может быть представлено в виде:
или Это означает, что случайная величина Х принимает значения в границах, симметрично расположенных относительно а, т.е. от до
Yandex.RTB R-A-252273-3- Содержание дисциплины и методические рекомендации по ее изучению
- Раздел I. Теория вероятностей
- Тема 1. Классификация событий
- Тема 2. Основные теоремы
- Тема 3. Повторные независимые испытания
- Тема 4. Дискретные случайные величины
- Тема 5. Непрерывные случайные величины. Нормальный закон распределения
- Тема 6. Двумерные (n-мерные) случайные величины
- Тема 7. Закон больших чисел
- Раздел 2. Математическая статистика
- Тема 8. Вариационные ряды
- Тема 9. Основы выборочного метода
- Тема 10. Элементы проверки статистических гипотез
- Тема 11. Элементы теории корреляции