1. Даны векторы .
А) вычисление смешанного произведения векторов . Вычисление смешанного произведения трёх неколлинеарных векторов вычисляется по следующей формуле: .
Б) модуль векторного произведения векторов . Модуль смешанного произведения трёх неколлинеарных векторов равен объёму параллелепипеда, построенного на этих векторах, т.е. .
В) вычисление скалярного произведения векторов . Скалярное произведение векторов вычисляется по формуле: .
Г) проверьте, будут ли коллинеарны или ортогональны какие – либо два из трёх заданных векторов. Векторное (скалярное) произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы ортогональны.
Д) проверьте, будут ли компланарны три заданных вектора. Смешанное произведение трёх ненулевых векторов равно нулю тогда и только тогда, когда эти векторы компланарны.
- 1. Векторная алгебра и аналитическая геометрия.
- 1.1. Прямая на плоскости
- 1.2. Прямая и плоскость в пространстве
- Векторная алгебра и аналитическая геометрия.
- 2. Заданы вершины треугольника .
- 1. Даны векторы .
- Прямая на плоскости
- 1. Дан треугольник с вершинами .
- Плоскость и прямая в пространстве
- 1. Даны четыре точки . Выполните чертёж. Составьте уравнения:
- Функции нескольких переменных
- Частные производные первого и второго порядка функции нескольких переменных. Алгоритм вычисления частных производных функций двух переменных
- Алгоритм вычисления дифференциала функции двух переменных
- Дифференциальные уравнения
- Дифференциальное уравнение первого порядка с разделёнными переменными.
- Алгоритм решения дифференциального уравнения первого порядка с разделяющимися переменными.
- Алгоритм решения дифференциального уравнения первого порядка.
- Дифференциальное уравнение Бернулли.
- Алгоритм решения дифференциального уравнения в полных дифференциалах .
- Алгоритм исследования сходимости знакоположительного ряда с помощью признака Даламбера.
- Алгоритм исследования сходимости знакоположительного ряда с помощью радикального признака Коши.
- Алгоритм исследования сходимости знакоположительного ряда с помощью интегрального признака Коши - Маклорена.
- Правило исследования сходимости знакоположительного ряда с помощью предельного признака сравнения .