logo
Поняття про диференціальні рівняння(корегований

§4. Диференціальні рівняння першого порядку з відокремлюваними змінними .

Рівняння вигляду , де функції , називається рівнянням з відокремлюваними змінними .

Спосіб інтегрування . Відокремити змінні , поділивши обидві частини рівняння на , і проінтегрувати :

Приклад 1. Розв’язати рівняння :

Розв’язання. Маємо диференціальне рівняння першого порядку з відокремлюваними змінними . Відокремимо змінні , поділивши праву і ліву частину рівняння на Маємо , .

Інтегруючи ліву і праву частини останньої рівності , одержуємо

= - або , звідки .

Вправи

Розв’язати рівняння :

24. 25.

26. 27.

28. 29.

30. ) 31.

32. ;

33.

34.

Знайти частинні розв’язки рівнянь :

35 .

36. при

37.

38.

39. при ;

40 .