Равенство множеств
Как уже отмечалось, два множества называются равными, если они состоят из одних и тех же элементов, т.е. представляют собой одно и тоже множество. Символ равенства множеств обладает свойствами:
А=А – рефлексивность;
если А=В, то В=А – симметричность;
если А=В и В=С, то А=С – транзитивность.
Из определения равенства множеств вытекает:
порядок элементов в множестве несуществен. Например, множества {1,2,3,4} и {3,4,1,2} представляют собой одно и тоже множество;
в множестве не должно быть неразличимых элементов. Поэтому в множестве не должно быть одинаковых элементов. Например, запись множества А={6,7,8,6,9} следует рассматривать как А={6,7,8,9}1.
Но, множество, которое состоит из элементов некоторого множества А так, что эти элементы могут входить в состав этого множества в любом количестве экземпляров, называют мультимножеством множества А. С точки зрения теории множеств, множество и мультимножество – это один и тот же объект и они могут между собой не различаться. Однако часто, особенно когда речь идет о представлении множества в памяти ЭВМ, возникает потребность отличать множество от мультимножества.
- 1. Элементы теории множеств
- 1.1 Понятие множества. Основные определения
- Способы задания множества
- Равенство множеств
- Подмножество
- Операции над множествами
- Предварительные замечания
- Объединение множеств
- 1.5.3 Пересечение множеств
- 1.5.4 Разность множеств
- 1.5.5 Симметрическая разность
- 1.5.6 Универсальное множество
- 1.5.7 Дополнение множества
- Принцип двойственности в алгебре множеств
- Тождества алгебры множеств
- Разбиение множества
- Упорядочение элементов и прямое произведение множеств
- Упорядоченное множество
- Прямое произведение множеств
- 1.9.3 Проекция множества
- 1.10 Соответствия
- 1.10.1 Обратное соответствие
- 1.10.2 Композиция соответствий
- 1.10.3 Отображения и функции
- 1.10.4 Основные свойства отображений
- 1.11 Функция
- 1.11.1 Способы задания функции
- 1.11.2 Сужение функции
- 1.11.3 Обратная функция
- 1.11.4 Функция времени
- 1.11.5 Понятие функционала
- 1.11.6 Понятие оператора
- 1.12 Отношения
- 1.12.1 Задание бинарных отношений
- Свойства отношений
- 1.12.3 Отношение эквивалентности
- 1.12.4 Отношение порядка
- 1.13 Конечные и бесконечные множества
- 1.13.1 Счётные и несчётные множества
- 1.13.2 Свойства счетных множеств
- 1. Всякое подмножество счетного множества конечно или счетно.
- 2. Объединение любого конечного или счетного множества счетных множеств есть снова счетное множество.
- 3. Всякое бесконечное множество содержит счетное подмножество.
- 1.13.3 Эквивалентность множеств
- 1.13.4 Теорема г. Кантора
- 1.13.5 Теорема Кантора – Бернштейна
- 1.13.6 Верхняя и нижняя границы множества
- 1.13.7 Теорема о верхних и нижних границах подмножества
- 1.13.8 Понятие мощности множества
- 2. Основные положения теории графов
- 2.1 Определение графа
- 2.2 Матричные представления графа
- 2.3. Достижимость
- 2.4. Неориентированные графы
- 2.5. Изоморфизм графов
- 2.6. Отношение порядка и отношение эквивалентности на графе
- 2.7. Характеристики графов
- 2.8 Операции над графами
- 2.9. Определение путей экстремальной длины
- 2.9.1. Задача о кратчайшем пути между двумя вершинами (ориентированного графа
- 2.9.2 Задача о нахождении пути максимальной длины между двумя фиксированными вершинами ориентированного графа
- Номера работ обозначены числами в кружке.
- Литература