logo search
Виды многогранников

1.3 Понятие правильного многогранника с точки зрения топологии

Рассмотрим понятие правильного многогранника с точки зрения топологии - науки, изучающей свойства фигур, не зависящих от различных деформаций без разрывов. С этой точки зрения, например, все треугольники эквивалентны, так как один треугольник всегда может быть получен из любого другого соответствующим сжатием или растяжением сторон. Вообще, все многоугольники с одинаковым числом сторон эквивалентны по той же причине.

Как в такой ситуации определить понятие топологически правильного многогранника? Иначе говоря, какие свойства в определении правильного многогранника являются топологически устойчивыми и их следует оставить, а какие не являются топологически устойчивыми и их следует отбросить.

В определении правильного многогранника количество сторон и граней являются топологически устойчивыми, то есть не меняющимися при непрерывных деформациях. Правильность же многоугольников не является топологически устойчивым свойством. Таким образом, мы приходим к следующему определению.

Выпуклый многогранник называется топологически правильным, если его гранями являются многоугольники с одним и тем же числом сторон и в каждой вершине сходится одинаковое число граней.

Два многогранника называются топологически эквивалентными, если один из другого можно получить непрерывной деформацией.

Например, все треугольники пирамиды являются топологически правильными многогранниками, эквивалентны между собой. Все параллелепипеды также являются эквивалентными между собой топологически правильными многогранниками, например, четырехугольные пирамиды.

Выясним вопрос о том, сколько существует не эквивалентных между собой топологически правильных многогранников.

Как мы знаем, существует пять правильных многогранников: тетраэдр, куб, октаэдр, икосаэдр и додекаэдр. Казалось бы, топологически правильных многогранников должно быть гораздо больше. Однако оказывается, что никаких других топологически правильных многогранников, не эквивалентных уже известным правильным, не существует.

Для доказательства этого воспользуемся теоремой Эйлера. Пусть дан топологически правильных многогранник, гранями которого являются п-угольники и в каждой вершине сходится т ребер. Ясно, что п и т больше и равны трем. Обозначим, как раньше, В - число вершин, Р - число ребер и Г - число граней. Тогда

пГ= 2Р; Г=; тВ=2Р; В=.

По теореме Эйлера В-Р+Г=2, следовательно,

Откуда

.

Из полученного равенства, в частности, следует, что должно выполняться неравенство 2n+2m-nm >0, которое эквивалентно неравенству (n-2) (m-2)<4. Найдем все возможные значения n и m, удовлетворяющие найденному неравенству, и заполним следующую таблицу:

3

4

5

3

В=4,

Р=6,

Г=4

Тетраэдр

В=6,

Р=12,

Г=8

октаэдр

В=12,

Р=30,

Г=20

икосаэдр

4

В=8,

Р=12,

Г=4

Куб

Не

существует

Не

существует

5

В=20,

Р=30,

Г=12

Додекаэдр

Не

существует

Не

существует

Например, значения n=3, m=3 удовлетворяют неравенству (n-2) (m-2)<4. Вычисляя значения Р, В и Г по приведенным выше формулам, получим: Р=6, В=4, Г=4. Значения n=4, m=4 не удовлетворяют неравенству (n-2) (m-2)<4, следовательно, соответствующего многогранника не существует.

Из этой таблицы следует, что возможными топологически правильными многогранниками являются только правильные многогранники. Нетрудно понять, почему может быть только пять типов правильных многогранников. Возьмем простейшую грань - равносторонний треугольник. Многогранный угол можно образовать, приложив друг к другу три, четыре либо пять равносторонних треугольников, то есть тремя способами. (Если число треугольников равно шести, то сумма плоских углов при общей вершине будет равна 360?). При использовании квадратов в качестве граней можно образовать многогранный угол лишь одним способом - с помощью трех приложенных друг к другу квадратов. Единственным способом может быть образован многогранный угол и из правильных пятиугольников. Правильные n - угольники при n многогранных углов, очевидно, не образует вообще. Таким образом, могут существовать только пять типов правильных многогранников: три многогранника с треугольными гранями (тетраэдра, октаэдр, икосаэдр), один с квадратными гранями (куб) и один с пятиугольными гранями (додекаэдр).