1.3.1 Задачи на построение правильных многогранников
Рассмотрим наиболее оригинальные способы построения правильных многогранников.
Задача 1. Построить правильный тетраэдр.
Решение
Пусть дан куб АВСDА1В1С1D1 (рис.1.4). Рассмотрим какую - либо его вершину, например А. В ней сходятся три грани куба, имеющие форму квадратов. В каждом из этих квадратов берем вершину, противоположную А, - вершины куба В1 , С1 , D. Точки А, В1 , С1 ,D. Являются вершинами правильного тетраэдра. Действительно, каждый из отрезков АВ1 , В1С1 , С1D , АD, В1D и АС1 , очевидно, служит диагональю одной из граней куба, а потому все эти отрезки равны. Отсюда следует, что в треугольной пирамиде с вершиной А и основанием В1С1D все грани - правильные треугольники, следовательно, эта пирамида - правильный тетраэдр. Этот тетраэдр вписан в данный куб.
Полезно заметить, что другие четыре вершины куба являются вершинами второго правильного тетраэдра А1ВСD1 , равного первому и также вписанного в данный куб. Следовательно, можно построить ровно два правильных тетраэдра, вписанных в данный куб.
Рис. 1.4. Куб
- Введение
- Глава 1 . Понятие многогранника и его элементы
- 1.1 Понятие многогранника
- 1.2 Теорема Эйлера
- 1.3 Понятие правильного многогранника с точки зрения топологии
- 1.3.1 Задачи на построение правильных многогранников
- 1.4 Симметрия многогранников
- 1.5 Подобие многогранников
- Глава 2. Виды многогранников
- 2.1 Призма
- 2.1.1 Площади боковой и полной поверхности призмы
- 2.2.1 Площади боковой и полной поверхности призмы
- 2.3 Параллелепипед
- 2.3.1 Площади боковой и полной поверхности параллелепипеда
- 2.4 Правильные многогранники
- 2.5 Полуправильные многогранники
- 2.6 Звездчатые многогранники
- Глава 3. Многогранники в различных областях культуры и науки
- Многогранники в живописи
- 3.2 Правильные многогранники в живой природе