1.2 Теорема Эйлера
Для выпуклых многогранников имеет место свойство, связывающее число его вершин, ребер и граней, доказанное в 1752 году Леонардом Эйлером и получившее название теоремы Эйлера. Прежде чем сформулировать эту теорему, исследуем известные нам многогранники.
Название многогранника |
В |
Р |
Г |
|
Треугольная пирамида |
4 |
6 |
4 |
|
Четырехугольная пирамида |
5 |
8 |
5 |
|
Треугольная пирамида |
6 |
9 |
5 |
|
Четырехугольная призма |
8 |
12 |
6 |
В - число вершин
Р - число ребер
Г - число граней
Из этой таблицы непосредственно видно, что для всех выбранных многогранников имеет место равенство В-Р+Г=2. Оказывается, что равенство справедливо не только для этих многогранников, но и для произвольного выпуклого многогранника.
Теорема Эйлера
Для любого выпуклого многогранника имеет место равенство: В-Р+Г=2.
Доказательство: Для доказательства этого равенства представим поверхность данного многогранника сделанной из эластичного материала. Удалим одну из его граней и оставшуюся поверхность растянем на плоскости. Получим многоугольник, разбитый на более мелкие многоугольники.
Заметим, что многоугольники можно деформировать, увеличивать, уменьшать и даже искривлять их стороны, лишь бы при этом не происходило разрывов сторон. Число вершин, ребер, граней и при этом не изменится.
Докажем, что для получения разбиения многоугольника на более мелкие многоугольники имеет место равенства
В-Р+Гґ=1 (*)
Где В - общее число вершин, Р - общее число ребер и Гґ - число многоугольников, входящих в разбиение. Ясно, что Гґ= Г-1, где Г - число граней данного многогранника.
Докажем, что равенства (*) не изменится, если в каком-нибудь многоугольнике данного разбиения провести диагональ (рис. 1.3а).
Рис.1.3.
Действительно, после проведения диагонали в новом разбиении будет В вершин, Р+1 ребро и количество многоугольников увеличивается на единицу. Следовательно, имеем В - (Р+1) + (Гґ+1) = В-Р+ Гґ. Пользуясь этим свойством, проведем диагонали, разбивающие многоугольники на треугольники (рис.3 б), и для полученного разбиения покажем выполнимость равенства (*). Для этого будем последовательно убирать внешние ребра, уменьшая количество треугольников. При этом возможны два случая:
а) для удаления треугольника АВС требуется снять два ребра, в нашем случае - АВ и ВС;
б) для удаления треугольника MKN требуется снять одно ребро, в нашем случае - MN.
В обоих случаях равенство (*) не изменится. Например, в первом случае после удаления треугольника граф будет состоять из В-1 вершин, Р-2 ребер и Гґ - многоугольника
(В-1) - (Р-2) + (Гґ-1)= В-Р+ Гґ
Таким образом, удаление одного треугольника не меняет равенства (*). Продолжая этот процесс удаления треугольников, в конце концов, мы придем к разбиению, состоящему из одного треугольника. Для такого разбиения В=3, Р=3, Гґ=1 и , следовательно В-Р+ Гґ=1. Значит, равенство (*) имеет место для исходного разбиения откуда окончательно получаем, что для данного разбиения многоугольника справедливо равенство(*). Таким образом, для исходного выпуклого многогранника справедливо равенство:
В-Р+ Г=2
Для любого многогранника верны неравенства:
Другие факты:
ь Всякий многогранник имеет хотя бы одну вершину, из которой исходит не более 5 ребер, а также грань, в которой не более 5 ребер.
ь В любом многограннике есть хотя бы одна треугольная грань или хотя бы один трехгранный угол.
ь Не существует многогранника, у которого ровно 7 ребер. Число 6 и любое целое число n8 могут быть количеством ребер выпуклого многогранника.
ь Для всякого выпуклого многогранника имеют место неравенства:
ь У любого многогранника есть по крайней мере две грани с одинаковым количеством сторон.
ь Во всяком выпуклом многограннике сумма плоских углов всех граней вдвое больше суммы углов выпуклого многоугольника, имеющего то же число вершин.
Если на каждой грани выпуклого многогранника выбрать по одной внутренней точке и соединить ребрами те из выбранных точек, которые лежат на смежных гранях, то получится новый многогранник, называемый сопряженным с данным. Количества вершин, ребер и граней данного и сопряженного многогранников связаны соотношениями В*=Г, Г*=В, Р*=Р.
Задача 1. Проверить теорему Эйлера для выпуклого многогранника с вершинами в серединах ребер куба.
Решение. Количество вершин нашего многогранника равно количеству ребер куба, то есть В=12.
Далее, многогранник имеет 8 треугольных граней (столько, сколько вершин у куба) и 6 четырехугольных граней (на каждой грани куба одна грань нашего многогранника). Следовательно, Г=8+6=14. Наконец, число ребер равно: Р=1/2 х (8х3+6х4)=24.
Имеем: 12+14=24+2.
Задача 2. Привести пример какого-нибудь многогранника, у которого 9 вершин и 7 граней.
Решение. Возьмем какой-нибудь многогранник с близкими значениями чисел В, Р, Г. Например, куб - у него В=8, Г=6.
Заметим, что если срезать куб так, как показано на рисунке, то получится многогранник с требуемым количеством вершин, ребер и граней.
- Введение
- Глава 1 . Понятие многогранника и его элементы
- 1.1 Понятие многогранника
- 1.2 Теорема Эйлера
- 1.3 Понятие правильного многогранника с точки зрения топологии
- 1.3.1 Задачи на построение правильных многогранников
- 1.4 Симметрия многогранников
- 1.5 Подобие многогранников
- Глава 2. Виды многогранников
- 2.1 Призма
- 2.1.1 Площади боковой и полной поверхности призмы
- 2.2.1 Площади боковой и полной поверхности призмы
- 2.3 Параллелепипед
- 2.3.1 Площади боковой и полной поверхности параллелепипеда
- 2.4 Правильные многогранники
- 2.5 Полуправильные многогранники
- 2.6 Звездчатые многогранники
- Глава 3. Многогранники в различных областях культуры и науки
- Многогранники в живописи
- 3.2 Правильные многогранники в живой природе