logo
Виды многогранников

1.4 Симметрия многогранников

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани. Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р-угольной призмы.

Примеры размерности симметрии плоских фигур дают правильные многоугольники. Примеры симметрии пространственных фигур дают правильные призмы и пирамиды: они совмещаются сами с собой, например, поворотами вокруг оси, перпендикулярной плоскости основания и проходящей через его центр.

Мы будем понимать симметрию в общем смысле, как она определена в начале и как ее понимают, в частности, когда говорят о симметрии кристаллов. При этом наложения фигуры на себя называются преобразованиями симметрии.

Теорема. Рассмотрим данный правильный многогранник Р. Пусть А -- его вершина, а -- ребро с концом А, а -- грань со стороной а. Для любых других аналогичных его элементов А, а, а существует наложение многогранника Р на себя, переводящее А в А, а в а, а в а.

Доказательство

Переносом многогранника переведем вершину А в А. Поворотом многогранника вокруг А переведем перенесенное ребро а в а. Поворотом многогранника вокруг ребра а приведем (перенесенную и повернутую) грань а в совпадение с гранью а. Так как грани равны, то грань а полностью совместится с а.

Так как двугранные углы равны, то для граней р и р, смежных с а и а, есть только две возможности: 1) р совпадает с р; 2) р не совпадает с р, но будет симметрична р относительно плоскости грани а. В таком случае отражением в этой плоскости переведем Р в р.

Итак, наложением всего многогранника Р мы совместили вершину А с А, ребро а -- с а, грани а, р, смежные по ребру а, -- с гранями а, р, смежными по ребру а.

Убедимся, что при этом многогранник оказывается совмещенным сам с собой. Две грани многогранного угла при вершине А совпали (а с а, р с р). Перейдем к граням у и у, соседним с р. Двугранные углы, которые они образуют с р, равны и расположены с одной стороны -- с той же, с какой лежит грань а. Поэтому грань у совпадает с у. Так убедимся, что многогранные углы при вершине А совпали. Переходя к другой вершине, соединенной с А ребром, аналогично убедимся, что и при этой вершине многогранные углы совпадают. И так пройдя по всему многограннику, убедимся, что он совпал сам с собой, что и требовалось доказать. ?

Свойство правильных многогранников, установленное доказанной теоремой, означает, что они обладают, так сказать, максимальной мыслимой симметрией. Наложение, совмещение многогранника самого с собою, неизбежно совмещает какую-то вершину А с А, ребро а -- с а, грань а-- с а, и примыкающую грань р -- с р. Наложение этим вполне определено, оно только одно. Поэтому максимальное число возможных наложений будет тогда, когда каждую совокупность А, а, а, р можно перевести в каждую. А это так у правильных многогранников Очевидно, верно и обратное. Если многогранник обладает такой максимальной симметрией, то он правильный (так как ребро а совмещается с а, угол на грани а при вершине А совмещается с таким же углом, и двугранный угол между а и р4 совмещается с углом между а и р.-- так что все ребра и углы равны). Число наложений, совмещающих правильный многогранник сам с собою, равно 2 те, где т -- число ребер, сходящихся в одной вершине, и е -- число вершин; те наложений первого рода и те -- наложений второго рода. Они и образуют группу симметрии правильного многогранника. Группы симметрии у куба и октаэдра совпадают ввиду их двойственности. Так же совпадают группы симметрии у додекаэдра и икосаэдра. Группа тетраэдра является подгруппой группы куба, как видно из возможности вложить тетраэдр в куб (рис. 1.5, а). Наиболее интересные элементы симметрии -- это зеркальные оси: 4-го порядка у тетраэдра, 6-го порядка -- у куба, 10-го порядка -- у додекаэдра (рис. 1.5,б). Убедитесь, что это так, определив, как расположены эти оси. Оси симметрии и плоскости симметрии куба изображены на рис. 1.5 в, г.

Рис. 1.5.