logo
Виды многогранников

2.2.1 Площади боковой и полной поверхности призмы

Площадью полной поверхности пирамиды называется сумма площадей всех ее граней, а площадью боковой поверхности пирамиды - сумма площадей ее боковых граней. Тогда, Sполн. = Sбок + Sосн.

Многоугольник, гранями которого является n - угольники А1А2…Аn и В1В2…Вn, расположенных в параллельных плоскостях, и n четырехугольников А1А2В1В2, А2А3В3В2 ..., называется усеченной пирамидой (рис. 2.3).

Рис. 2.3.

Основаниями усеченной пирамиды называются параллельные грани ABCD и A1B1C1D1 (ABCD - нижнее основание, а A1B1C1D1 - верхнее основание).

Высота усеченной пирамиды - отрезок прямой,

перпендикулярный основаниям и заключенный

между их плоскостями.

Усеченная пирамида правильная, если ее основания - правильные многоугольники, а прямая, соединяющая центры оснований, перпендикулярна плоскости оснований.

Апофемой усеченной пирамиды называют высоту ее боковой грани

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему: