2.2.1 Площади боковой и полной поверхности призмы
Площадью полной поверхности пирамиды называется сумма площадей всех ее граней, а площадью боковой поверхности пирамиды - сумма площадей ее боковых граней. Тогда, Sполн. = Sбок + Sосн.
Многоугольник, гранями которого является n - угольники А1А2…Аn и В1В2…Вn, расположенных в параллельных плоскостях, и n четырехугольников А1А2В1В2, А2А3В3В2 ..., называется усеченной пирамидой (рис. 2.3).
Рис. 2.3.
Основаниями усеченной пирамиды называются параллельные грани ABCD и A1B1C1D1 (ABCD - нижнее основание, а A1B1C1D1 - верхнее основание).
Высота усеченной пирамиды - отрезок прямой,
перпендикулярный основаниям и заключенный
между их плоскостями.
Усеченная пирамида правильная, если ее основания - правильные многоугольники, а прямая, соединяющая центры оснований, перпендикулярна плоскости оснований.
Апофемой усеченной пирамиды называют высоту ее боковой грани
Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему:
- Введение
- Глава 1 . Понятие многогранника и его элементы
- 1.1 Понятие многогранника
- 1.2 Теорема Эйлера
- 1.3 Понятие правильного многогранника с точки зрения топологии
- 1.3.1 Задачи на построение правильных многогранников
- 1.4 Симметрия многогранников
- 1.5 Подобие многогранников
- Глава 2. Виды многогранников
- 2.1 Призма
- 2.1.1 Площади боковой и полной поверхности призмы
- 2.2.1 Площади боковой и полной поверхности призмы
- 2.3 Параллелепипед
- 2.3.1 Площади боковой и полной поверхности параллелепипеда
- 2.4 Правильные многогранники
- 2.5 Полуправильные многогранники
- 2.6 Звездчатые многогранники
- Глава 3. Многогранники в различных областях культуры и науки
- Многогранники в живописи
- 3.2 Правильные многогранники в живой природе