logo search
Виды многогранников

2.1.1 Площади боковой и полной поверхности призмы

Площадью полной поверхности призмы называется сумма площадей всех ее граней, а площадью боковой поверхности призмы - сумма площадей ее боковых граней. Площадь Sполн. полной поверхности выражается через площадь Sбок боковой поверхности и Sосн основания призмы формулой:

Sполн. =Sбок +2Sосн.

Докажем теорему о площади боковой поверхности прямой призмы: площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы, Sбок= Ph.

Доказательство:

Боковые грани прямой призмы - прямоугольники, основания которых - стороны основания призмы, а высоты равны высоте h призмы. Площадь боковой поверхности призмы равна сумме площадей указанных прямоугольников, т. е. равна сумме произведений сторон основания на высоту h, вынося множитель h за скобки, мы получаем в скобках сумму сторон основания призмы, т. е. его периметр P. Итак, Sбок= Ph.

Теорема доказана.

2.2 Пирамида

Многогранник, составленный из n - угольника А1А2…Аn и n треугольников, называется пирамидой (рис. 2.2). Многоугольник А1А2…Аn называется основанием, а треугольники - боковыми гранями пирамиды. Точка Р называется вершиной пирамиды, а отрезки РА1, РА2,…РАn - ее боковыми ребрами. Пирамиду с основанием А1А2…Аn и вершиной Р обозначают так: РА1А2…Аn - и называют n - угольной пирамидой. На рисунке показаны четырехугольная и шестиугольная пирамиды. Ясно, что треугольная пирамида - это тетраэдр.

Рис. 2.2. Пирамида

Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотой пирамиды. Сечение пирамиды плоскостью, параллельной плоскости основания, называют поперечным сечением пирамиды.

Свойства поперечных сечений пирамиды:

1. Если пересечь пирамиду плоскостью, параллельной основанию, то:

ь боковые ребра и высота пирамиды разделятся этой плоскостью на пропорциональные отрезки;

ь в сечении получится многоугольник, подобный многоугольнику, лежащему в основании;

ь площади сечения и основания будут относиться друг к другу как квадраты их расстояний от вершины пирамиды: S1:S2=X12:X22

2. Если две пирамиды с равными высотами пересечь плоскостями, параллельными основаниям, на одинаковом расстоянии от вершины, то площади сечений будут пропорциональны площадям оснований.