Метод наименьших квадратов
1) Выравнивание по прямой.
Пусть дана таблица (1). Построим на пл–ти точки (хі;уі). Предположим, что точки распологаются вдоль некоторой прямой у=ах+b. Переберем параметры а и b таким образом, чтобы прямая наиболее близко подходила к данным точкам.
Е1=ах1+b-y1
Е2=ах2+b-y2
……………………….
Еn=ахn+b-yn Для определения параметров а и b используем метод наименьших квадратов. Суть метода в том, чтобы определить а и b так, чтобы сумма квадратов отклонений была наименьшей. Выясним при каких значениях а и b ф–ция Ф(а;b) принимает наименьшее значение
Найдём критические точки:
Это нормальная система метода наименьших квадратов.
Решив эту систему найдём координаты критических точек. Можно док–ть, что в найденной критической точке ф–ция Ф(а;b) имеет min.2) Выравнивание по параболе y=ax2+bx+c. По аналогии с линейной ф–цией составляем ф–цию Ф(a,b,c)? которая даёт сумму квадратов отклонений, и находим её наименьшее значение:
Найдя частные производные и приравняв их к нулю, после преобразований получим линейную систему трёх уравнений с тремя неизвестными a,b,c:Можно док–ть, что определитель этой системы не равен нулю, а следовательно, система имеет единственное решение.
- 1.1.Понятие функции нескольких переменных.
- 1.4 Полный дифференциал.
- 1.5.1 Необходимое условие экстремума функции двух переменных.
- 1.5.2 Достаточное условие экстремума ф–ции двух переменных.
- 4.4.Ду 2 порядка, допускающие понижение порядка
- 3.2 Свойства определенного интеграла.
- 5. 3.3 Фомула Ньютона-Лейбница
- 3.5 Замена переменной и интегрирование по частям в определенном интеграле.
- 3.6 Приложение определенного интеграла в геометрии
- 4.3Линейные ду первого порядка
- 3.8 Несобственные интегралы.
- Интегралы с бесконечными пределами.
- 2. Несобственные интегралы от неограниченной функции.
- 1.5 Методы наименьших квадратов…
- Метод наименьших квадратов
- 2.6. Интегрирование тригонометрических функций. J – знак интеграла
- 1.5.3.Наибольшее и наименьшее значение функции 2-х переменных
- 5.5Признак сравнения рядов
- 4.5. Комплексные числа, их геометрическая интерпретация, осн.Св-ва.
- 4.7Линейные нердн. Ур-ния 2-го порядка
- 5.2Сумма ряда.
- 5.1 Понятие числового ряда и сумма ряда.
- 6.2.Теорема Абеля.
- 6.7.Применение рядов в приближенных вычислениях.Оценка точности вычислений
- 2.4. Интегрирование по частям и б)замена переменной в неопределенном интеграле. J – знак интеграла
- 6.5.Ряды Тейлора и Маклорена.
- 6.3.Интервал, радиус и область сходимости степенного ряда.
- 6.6.Разложение некоторых елементарных ф-ций в степенные ряды
- 2.2.Основные св–ва неопределённого интеграла:
- 6.4.Свойства степенных рядов .