2.6. Интегрирование тригонометрических функций. J – знак интеграла
Интегралы вида J sinaxcosbxdx, J cosaxcosbxdx, Jsinaxsinbxdx, где a≠b, находятся с помощью формул:
sinaxcosbxdx=1/2(sin(a-b)x+sin(a+b)x),cosaxcosbxdx=1/2(cos(a-b)x+cos(a+b)x), sinaxsinbxdx=1/2(cos(a-b)x-cos(a+b)x).
Интегралы вида J R(sinx,cosx)dx, где R - рациональная функция, приводятся к интегрированию рациональных функций с помощью подстановки tgx/2=t, так как J R(sinxcosx)dx=2J R(2t/(1+t2),(1-t2)/(1+t2)) dt/(1+t2). Данная подстановка, являющаяся универсальной для интегралов этого типа, приводит иной раз к сложным выкладкам. В таких случаях используются более простые подстановки. Если выполнено рав-во R(-sinx,cosx)= - R(sinx,cosx) или R(sinx, - cosx)= - R(sinx,cosx), то применяют подстановку cosx=t либо sinx=t. Если выполнено рав-во R(-sinx,-cosx)=R(sinx,cosx), то интеграл приводят интегралу от рациональной дроби с помощью подстановки tgx=t, т.к. в этом случае R(sinx,cosx)=R(tgx), dx=dt/(1+t2)
- 1.1.Понятие функции нескольких переменных.
- 1.4 Полный дифференциал.
- 1.5.1 Необходимое условие экстремума функции двух переменных.
- 1.5.2 Достаточное условие экстремума ф–ции двух переменных.
- 4.4.Ду 2 порядка, допускающие понижение порядка
- 3.2 Свойства определенного интеграла.
- 5. 3.3 Фомула Ньютона-Лейбница
- 3.5 Замена переменной и интегрирование по частям в определенном интеграле.
- 3.6 Приложение определенного интеграла в геометрии
- 4.3Линейные ду первого порядка
- 3.8 Несобственные интегралы.
- Интегралы с бесконечными пределами.
- 2. Несобственные интегралы от неограниченной функции.
- 1.5 Методы наименьших квадратов…
- Метод наименьших квадратов
- 2.6. Интегрирование тригонометрических функций. J – знак интеграла
- 1.5.3.Наибольшее и наименьшее значение функции 2-х переменных
- 5.5Признак сравнения рядов
- 4.5. Комплексные числа, их геометрическая интерпретация, осн.Св-ва.
- 4.7Линейные нердн. Ур-ния 2-го порядка
- 5.2Сумма ряда.
- 5.1 Понятие числового ряда и сумма ряда.
- 6.2.Теорема Абеля.
- 6.7.Применение рядов в приближенных вычислениях.Оценка точности вычислений
- 2.4. Интегрирование по частям и б)замена переменной в неопределенном интеграле. J – знак интеграла
- 6.5.Ряды Тейлора и Маклорена.
- 6.3.Интервал, радиус и область сходимости степенного ряда.
- 6.6.Разложение некоторых елементарных ф-ций в степенные ряды
- 2.2.Основные св–ва неопределённого интеграла:
- 6.4.Свойства степенных рядов .