5.2Сумма ряда.
Пусть дан числовой ряд а1+а2+а3+...+аn...
Составим суммы
S1=a1; S2=a1+a2; S3=a1+a2+a3; S n=a1+a2+…+an
Суммой S1, S2,…,S n - называются частичными суммами ряда, Они образуют бесконечную числовую последовательность.
1. Если существует lim S n равный S, то говорят, что ряд n →∞ сходится и его сумма равна S.
2. Если Lim S n не существует или равен бесконечности n →∞ , то говорят, что ряд расходится.
Гармонический ряд.
1+1/2+1/3+…+1/n+…
Докажем, что гармонический ряд расходится: предположим, что он сходится и имеет сумму S. Тогда (S2n-Sn) = S-S =0,
1+1/2+1/3+1/4+…+1/n+…, (S2n-Sn) = 0,S2n-Sn1+1/2+1/3+1/n+1/(n+1)+1/(n+2)+…+1/2n-(1+1/2+1/3+1/4+…+1/n) = 1/(n+1)+1/(n+2)+…+1/(n+n)>n*1/2n = ½,
S2n-Sn>1/2, (S2n-Sn) ≠ 0 (не может быть равен 0).
Мы пришли к противоречию, из чего следует, что гармонический ряд расходится.
- 1.1.Понятие функции нескольких переменных.
- 1.4 Полный дифференциал.
- 1.5.1 Необходимое условие экстремума функции двух переменных.
- 1.5.2 Достаточное условие экстремума ф–ции двух переменных.
- 4.4.Ду 2 порядка, допускающие понижение порядка
- 3.2 Свойства определенного интеграла.
- 5. 3.3 Фомула Ньютона-Лейбница
- 3.5 Замена переменной и интегрирование по частям в определенном интеграле.
- 3.6 Приложение определенного интеграла в геометрии
- 4.3Линейные ду первого порядка
- 3.8 Несобственные интегралы.
- Интегралы с бесконечными пределами.
- 2. Несобственные интегралы от неограниченной функции.
- 1.5 Методы наименьших квадратов…
- Метод наименьших квадратов
- 2.6. Интегрирование тригонометрических функций. J – знак интеграла
- 1.5.3.Наибольшее и наименьшее значение функции 2-х переменных
- 5.5Признак сравнения рядов
- 4.5. Комплексные числа, их геометрическая интерпретация, осн.Св-ва.
- 4.7Линейные нердн. Ур-ния 2-го порядка
- 5.2Сумма ряда.
- 5.1 Понятие числового ряда и сумма ряда.
- 6.2.Теорема Абеля.
- 6.7.Применение рядов в приближенных вычислениях.Оценка точности вычислений
- 2.4. Интегрирование по частям и б)замена переменной в неопределенном интеграле. J – знак интеграла
- 6.5.Ряды Тейлора и Маклорена.
- 6.3.Интервал, радиус и область сходимости степенного ряда.
- 6.6.Разложение некоторых елементарных ф-ций в степенные ряды
- 2.2.Основные св–ва неопределённого интеграла:
- 6.4.Свойства степенных рядов .