шпоры матем 2
1.5 Методы наименьших квадратов…
В прикладных задачах техники, биологии, экономики зависимость между переменными х и у часто выражают ввиде таблицы: (1)
X | x1 | x2 | ……. | xn |
Y | y1 | y2 | ……. | yn |
1) y=ax+b 2) y=ax2+bx+c 3) y=a/x +b 4) y=a lnx+b 5) y=axb 6) y=abx
Построение эмпирической ф–лы состоит из 2–х этапов:
1.Выбор вида эмпирической ф–лы. Он устанавливается из теоретических соображений или по хар–ру расположения точек (xi;yi) на плоскости.
2.Определение параметров выбранной ф–лы.
Содержание
- 1.1.Понятие функции нескольких переменных.
- 1.4 Полный дифференциал.
- 1.5.1 Необходимое условие экстремума функции двух переменных.
- 1.5.2 Достаточное условие экстремума ф–ции двух переменных.
- 4.4.Ду 2 порядка, допускающие понижение порядка
- 3.2 Свойства определенного интеграла.
- 5. 3.3 Фомула Ньютона-Лейбница
- 3.5 Замена переменной и интегрирование по частям в определенном интеграле.
- 3.6 Приложение определенного интеграла в геометрии
- 4.3Линейные ду первого порядка
- 3.8 Несобственные интегралы.
- Интегралы с бесконечными пределами.
- 2. Несобственные интегралы от неограниченной функции.
- 1.5 Методы наименьших квадратов…
- Метод наименьших квадратов
- 2.6. Интегрирование тригонометрических функций. J – знак интеграла
- 1.5.3.Наибольшее и наименьшее значение функции 2-х переменных
- 5.5Признак сравнения рядов
- 4.5. Комплексные числа, их геометрическая интерпретация, осн.Св-ва.
- 4.7Линейные нердн. Ур-ния 2-го порядка
- 5.2Сумма ряда.
- 5.1 Понятие числового ряда и сумма ряда.
- 6.2.Теорема Абеля.
- 6.7.Применение рядов в приближенных вычислениях.Оценка точности вычислений
- 2.4. Интегрирование по частям и б)замена переменной в неопределенном интеграле. J – знак интеграла
- 6.5.Ряды Тейлора и Маклорена.
- 6.3.Интервал, радиус и область сходимости степенного ряда.
- 6.6.Разложение некоторых елементарных ф-ций в степенные ряды
- 2.2.Основные св–ва неопределённого интеграла:
- 6.4.Свойства степенных рядов .