2.4. Интегрирование по частям и б)замена переменной в неопределенном интеграле. J – знак интеграла
А)Теорема. Пусть U(x), V(x) – дифференцируемые функции на некотором промежутке Х и на этом промежутке существует J VdU, тогда на нем существует J UdV и имеет место J UdV= UV – J VdU.
Док-во. Найдем дифференциал от произведения функции UdV.
d(VU)=(UV)’dx–(U’V+UV’)dx=VU’dx+UV’dx=VdU+UdV;d(UV)=VdU+UdV; UdV=D(UV) – VdU; проинтегрируем обе части этого рав-ва: J UdV=J d(UV) – JVdU;
J UdV= UV- J VdU
Большую часть интегралов, которую находят с помощью формулы интегрирования можно разделить на 3 группы:
I. J P(x) arcsinxdx
J P(x) arccosxdx
J P(x) arctgxdx
J P(x) arcctgxdx
за U берем обратную тригонометрическую функцию
II. J P(x)sinαxdx; J P(x) cosαxdx; J P(x) eαxdx – за U берем P(x)
III. J eαx*sinβxdx; Jeαxcosβxdx – за U- любую тригонометрическ. Функцию. В этом случае интегриров. по частям след. примен. дважды.
Б) Метод подстановки заключается в том, что переменную интегрирования х заменяют другой переменной t при помощи формулы t=Y(x), где Y(x) - дифференцир. фун-ция. Можно производить замену выражая не t через х, а х через t с помощью формулы x=ψ(t),
- 1.1.Понятие функции нескольких переменных.
- 1.4 Полный дифференциал.
- 1.5.1 Необходимое условие экстремума функции двух переменных.
- 1.5.2 Достаточное условие экстремума ф–ции двух переменных.
- 4.4.Ду 2 порядка, допускающие понижение порядка
- 3.2 Свойства определенного интеграла.
- 5. 3.3 Фомула Ньютона-Лейбница
- 3.5 Замена переменной и интегрирование по частям в определенном интеграле.
- 3.6 Приложение определенного интеграла в геометрии
- 4.3Линейные ду первого порядка
- 3.8 Несобственные интегралы.
- Интегралы с бесконечными пределами.
- 2. Несобственные интегралы от неограниченной функции.
- 1.5 Методы наименьших квадратов…
- Метод наименьших квадратов
- 2.6. Интегрирование тригонометрических функций. J – знак интеграла
- 1.5.3.Наибольшее и наименьшее значение функции 2-х переменных
- 5.5Признак сравнения рядов
- 4.5. Комплексные числа, их геометрическая интерпретация, осн.Св-ва.
- 4.7Линейные нердн. Ур-ния 2-го порядка
- 5.2Сумма ряда.
- 5.1 Понятие числового ряда и сумма ряда.
- 6.2.Теорема Абеля.
- 6.7.Применение рядов в приближенных вычислениях.Оценка точности вычислений
- 2.4. Интегрирование по частям и б)замена переменной в неопределенном интеграле. J – знак интеграла
- 6.5.Ряды Тейлора и Маклорена.
- 6.3.Интервал, радиус и область сходимости степенного ряда.
- 6.6.Разложение некоторых елементарных ф-ций в степенные ряды
- 2.2.Основные св–ва неопределённого интеграла:
- 6.4.Свойства степенных рядов .