Rotation_3D[1]
2. Двойное внутреннее умножение тензоров второго ранга
Двум тензорам второго ранга A = ab и B = cd поставим в соответствие число α по правилу
α = A··B = (ab)··(cd) = (b · c)(a · d). | (10) |
Двойное внутреннее умножение коммутативно
A··B = B··A |
|
и дистрибутивно
(A + B)··(C + D) = A··C + A··D + B··C + B··D. |
|
Содержание
- Повороты в 3d Повороты в 3d. Тензоры, кватернионы и прочие "штучки"
- Из истории…
- Векторы в трехмерном пространстве
- Основные операции над векторами
- 1. Правило сложения векторов
- 2. Умножение вектора на скаляр
- 3. Скалярное произведение векторов
- 4. Векторное произведение векторов
- Тензоры второго ранга
- Основные операции над тензорами
- 1. Внутреннее умножение тензоров второго ранга
- 2. Двойное внутреннее умножение тензоров второго ранга
- 3. Транспонирование тензора
- 4. Скалярное произведение тензоров
- 5. Скалярное умножение тензора на вектор справа (слева)
- 6. Векторное умножение тензора на вектор справа (слева)
- 7. След тензора второго ранга
- 8. Векторный инвариант тензора второго ранга
- Симметричные и антисимметричные тензоры
- Ортогональные тензоры. Тензор поворота
- Теорема Эйлера
- Композиция поворотов. Правило квазикоммутативности
- Вектор поворота
- Теорема о представлении тензора поворота
- Тензор поворота и кватернион
- Вместо заключения