41. Двухэлементная булева алгебра. Алгебра булевых функций. Фактор-алгебра алгебры формул.
Опишем булеву алгебру βn функцией алгебры логики от n переменных. В качестве носителя рассмотрим множество . Отношение ≤ на множестве Bn определим по следующему правилу: для любого набора значений X=(δ1,…,δn). Пересечением называется такая функция h , что h(X)=min{f(X),g(X)} на любом наборе X=(δ1,…,δn). Объединением называется такая функция h, чтоh=max{f(X),g(X)} на любом наборе X. Дополнение функции f определяется следующим образом: . В качестве 0 рассмотрим функцию, являющуюся константой 0, а в качестве 1 возьмем константу 1. Система образует булеву алгебру функций от n переменных (алгебру булевых функций).
Рассмотрим множество B0={0,1} и определим на нем операции согласно таблицам истинности. Тогда система является двухэлементной булевой алгеброй. Формулы алгебры логики, содержащие лишь логические операции являются термами в β0. По теореме о функциональной полноте в булевой алгебре с помощью терма можно задать любую булеву функцию.
Обозначим через Фn множество всех формул алгебры логики с переменными из множества {x1,…,xn}. На множестве Фn определены двухместные операции конъюнкции и дизъюнкции и одноместная операция отрицания. Выделим на множестве Фn две константы и . Получается алгебра формул . Отношение ≈ эквивалентности формул является конгруенцией на алгебре множестве Фn/≈ операции определяются следующим образом: , , . На множестве Фn/≈ выделяются две константы: и . Полученная система является фактор-алгеброй Fn/≈.
Теорема: Фактор-алгебра Fn/≈ изоморфна алгебре булевых функций βn.
Доказательство: Искомый изоморфизм определяется по следующему правилу: классу эквивалентности ≈(φ) сопоставляется функция fφ, имеющая таблицу истинности произвольной формулы из множества ≈(φ). Поскольку разным классам эквивалентности соответствуют различные таблицы истинности, отображение ξ инъективно, а так как для любой булевой функции f из Bn найдется формула , представляющая функцию f, то отображение ξ сюръективно. Сохранение операций при отображении ξ проверяется непосредственно.
- Множества. Основные операции над множествами и их свойства. Диаграммы Венна. Декартово произведение множеств.
- Отношения и бинарные отношения, область определения, область значения, обратные отношения. Произведение отношений.
- Функции. Инъекции, сюръекции, биекции. Понятие последовательности.
- Множество натуральных чисел. Два подхода к определению множества натуральных чисел. Аксиомы Дедекинда-Пеано. Принцип математической индукции.
- Понятие мощности множества. Сравнение мощностей. Теорема Кантора-Берштейна. Операции над кардинальными числами.
- Конечные, счетные, континуальные множества. Мощность булеана.
- Матрицы бинарных отношений и их свойства. Специальные бинарные отношения.
- Отношения эквивалентности и разбиения. Фактор-множества. Матрица отношения эквивалентности.
- Отношения порядка. Максимальные и минимальные, наибольший и наименьший элементы частично упорядоченного множества. Диаграммы Хассе. Линейно и вполне упорядоченные множества.
- Алгебраические системы: определение и примеры. Понятие полугруппы, моноида, группы; задание с помощью таблицы Кэли.
- Морфизмы алгебраических систем.
- Подсистемы. Термы сигнатуры ∑. Подсистема, порожденная множеством, ее структура.
- Конгруэнции, фактор-алгебры, теорема о гомоморфизме.
- 17.Многообразия. Теорема Биркгофа.
- Решетки. Дистрибутивные решетки. Критерий дистрибутивности.
- Булевы алгебры. Теорема Стоуна. Принцип двойственности для булевых алгебр.
- Булево кольцо.
- 18. Алгебры отношений. Реляционные алгебры.
- 27. Виды и способы задания графов.
- 28. Подграфы и части графа. Операции над графами. N-Мерные кубы.
- Объединение: .
- 29. Маршруты, циклы, цепи. Достижимость и связность (матрицы достижимости, контрдостижимости, связности).
- 30. Расстояние в графах. Центральные и периферийные вершины.
- 31. Взвешенное расстояние. Алгоритм Форда-Беллмана.
- 32. Степени вершин. Эйлеровы графы, циклы, цепи. Алгоритм построения эйлерова цикла.
- 33. Гамильтоновы графы. Постановка задачи коммивояжера.
- 34. Деревья, леса. Остовы графов. Цикломатическое число, коранг. Алгоритм построения остова минимального веса. Обходы графов по глубине и ширине.
- 35. Упорядоченные и бинарные деревья. Соответствия между ними.
- 36. Фундаментальные циклы, разрезы. Матрицы фундаментальных циклов, разрезов.
- 37. Раскраска графов. Планарные графы.
- 38. Формулы алгебры логики, их таблицы истинности.
- 39. Булевы функции, способы их задания. Представления булевых функций формулами.
- 40. Эквивалентность формул.
- 41. Двухэлементная булева алгебра. Алгебра булевых функций. Фактор-алгебра алгебры формул.
- 42. Дизъюнктивные и конъюнктивные нормальные формы. Алгоритм приведения формулы к днф и кнф.
- 43. Теорема Шеннона. Теорема о функциональной полноте. Способы построения сднф и скнф.
- 44. Импликанты, простые импликанты. Сокращенные, тупиковые, минимальные нормальные формы. Алгоритм Квайна построения мднф.
- 45. Карты Карно. Построение мднф с помощью карт Карно.
- 46. Принцип двойственности. Самодвойственные функции.
- 47. Теорема Жегалкина. Способы построения полиномов Жегалкина. Линейные функции.
- 48. Классы Поста. Полные системы булевых функций. Теорема Поста. Базисы.
- 49. Логические сети. Реализация булевых функций контактными схемами и схемами из функциональных элементов.