Множество натуральных чисел. Два подхода к определению множества натуральных чисел. Аксиомы Дедекинда-Пеано. Принцип математической индукции.
Два подхода к определению множества натуральных чисел:
Конструктивный.
Позволяет представить натуральные числа в виде объектов, построенных из пустого множества.
Положим по определению . Множества 0, 1, 2,… называются натуральными числами. Объединение этих чисел N={0, 1, 2,…, n,…} называется множеством натуральных чисел.
Замечание: АВ – множество всех функций из В в А. Если В=n={0,1,2…,n-1}, A=2={0,1}, то АВ=2n.
Аксиоматический подход.
Рассмотрим аксиоматику Дедекинда Пеано:
Пусть имеется некоторое множество N, в котором выбран элемент 0 и функция, которая элементу n из N ставит в соответствие элемент n’ из N, называемый непосредственно следующим (элемент n’ играет роль числа n+1).
Множество N называется множеством натуральных чисел, если система <N,0,’> удовлетворяет аксиомам:
- для любого m≠0 найдется n из N такой, что n’=m.
- для любых m,n из N, если m’=n’, то m=n.
- n’≠0 для любого n из N.
- на множестве N выполняется аксиома математической индукции.
Принцип (аксиома) математической индукции:
Для любого свойства Р (унарного отношения на множестве N), если Р выполняется на элементе 0 (т.е. 0 обладает свойством Р), и для любого n из N из выполнимости Р на элементе n следует выполнимость Р на элементе n’, то свойство Р выполняется на любом элементе n из N.
или или
Иногда удается установить только выполнение Р(к) для некоторого к>0 и свойство Р(n)=>Р(n+1) для всех n≥к:
Принцип полной индукции:
Если для всякого n из N из предположения, что P(k) верно при любом натуральном k<n, следует, что P(k) верно также при k=n, то P(n) верно при любом натуральном n:
Yandex.RTB R-A-252273-3
- Множества. Основные операции над множествами и их свойства. Диаграммы Венна. Декартово произведение множеств.
- Отношения и бинарные отношения, область определения, область значения, обратные отношения. Произведение отношений.
- Функции. Инъекции, сюръекции, биекции. Понятие последовательности.
- Множество натуральных чисел. Два подхода к определению множества натуральных чисел. Аксиомы Дедекинда-Пеано. Принцип математической индукции.
- Понятие мощности множества. Сравнение мощностей. Теорема Кантора-Берштейна. Операции над кардинальными числами.
- Конечные, счетные, континуальные множества. Мощность булеана.
- Матрицы бинарных отношений и их свойства. Специальные бинарные отношения.
- Отношения эквивалентности и разбиения. Фактор-множества. Матрица отношения эквивалентности.
- Отношения порядка. Максимальные и минимальные, наибольший и наименьший элементы частично упорядоченного множества. Диаграммы Хассе. Линейно и вполне упорядоченные множества.
- Алгебраические системы: определение и примеры. Понятие полугруппы, моноида, группы; задание с помощью таблицы Кэли.
- Морфизмы алгебраических систем.
- Подсистемы. Термы сигнатуры ∑. Подсистема, порожденная множеством, ее структура.
- Конгруэнции, фактор-алгебры, теорема о гомоморфизме.
- 17.Многообразия. Теорема Биркгофа.
- Решетки. Дистрибутивные решетки. Критерий дистрибутивности.
- Булевы алгебры. Теорема Стоуна. Принцип двойственности для булевых алгебр.
- Булево кольцо.
- 18. Алгебры отношений. Реляционные алгебры.
- 27. Виды и способы задания графов.
- 28. Подграфы и части графа. Операции над графами. N-Мерные кубы.
- Объединение: .
- 29. Маршруты, циклы, цепи. Достижимость и связность (матрицы достижимости, контрдостижимости, связности).
- 30. Расстояние в графах. Центральные и периферийные вершины.
- 31. Взвешенное расстояние. Алгоритм Форда-Беллмана.
- 32. Степени вершин. Эйлеровы графы, циклы, цепи. Алгоритм построения эйлерова цикла.
- 33. Гамильтоновы графы. Постановка задачи коммивояжера.
- 34. Деревья, леса. Остовы графов. Цикломатическое число, коранг. Алгоритм построения остова минимального веса. Обходы графов по глубине и ширине.
- 35. Упорядоченные и бинарные деревья. Соответствия между ними.
- 36. Фундаментальные циклы, разрезы. Матрицы фундаментальных циклов, разрезов.
- 37. Раскраска графов. Планарные графы.
- 38. Формулы алгебры логики, их таблицы истинности.
- 39. Булевы функции, способы их задания. Представления булевых функций формулами.
- 40. Эквивалентность формул.
- 41. Двухэлементная булева алгебра. Алгебра булевых функций. Фактор-алгебра алгебры формул.
- 42. Дизъюнктивные и конъюнктивные нормальные формы. Алгоритм приведения формулы к днф и кнф.
- 43. Теорема Шеннона. Теорема о функциональной полноте. Способы построения сднф и скнф.
- 44. Импликанты, простые импликанты. Сокращенные, тупиковые, минимальные нормальные формы. Алгоритм Квайна построения мднф.
- 45. Карты Карно. Построение мднф с помощью карт Карно.
- 46. Принцип двойственности. Самодвойственные функции.
- 47. Теорема Жегалкина. Способы построения полиномов Жегалкина. Линейные функции.
- 48. Классы Поста. Полные системы булевых функций. Теорема Поста. Базисы.
- 49. Логические сети. Реализация булевых функций контактными схемами и схемами из функциональных элементов.