43. Теорема Шеннона. Теорема о функциональной полноте. Способы построения сднф и скнф.
Пусть (x1,…,xn) – набор логических переменных, ∆= (δ1,…,δn) – набор нулей и единиц. Конституентой единицы набора ∆ называется конъюнкт . Конституентой нуля набора ∆ называется дизъюнкт . СДНФ – дизъюнкция некоторых конституент единицы, среди которых нет одинаковых. СКНФ – конъюнкция некоторых коституент нуля, среди которых нет одинаковых. Рассмотрим разложение булевой функции f(x1,…,xn) по k переменным.
Первая теорема Шеннона: Любая булева функция f(x1,…,xn) представима в виде разложения Шеннона: Доказательство: Заметим, что . Подставим произвольно вместо первых k переменных их значения: . Тогда левая часть доказываемой формулы равна . Правая часть представляет собой дизъюнкцию 2k конъюнкций вида , которые этой подстановкой разбиваются на два класса. К первому классу относится конъюнкция, у которой набор (δ1,…,δk) совпадает с набором : . Эта конъюнкция равна Евой части формулы. Ко второму классу относится 2k-1 конъюнкций, у каждой из которых хотя бы в одной переменной xi, выполнимо условие . Следовательно каждая из них равна нулю. Используя закон , получаем, что левая и правая части формул равны при любой подстановке переменных x1,…,xn.
Вторая теорема Шеннона: Любая булева функция f(x1,…,xn) представима в виде разложения Шеннона: .При k=n, для булевой функции f(x1,…,xn)≠0 получаем ее представление в виде СДНФ: .
Для булевой функции f(x1,…,xn)≠1, получаем представление в виде СДНФ: .
Теорема о функциональной полноте: Для любой булевой функции f найдется формула φ, представляющая функцию f. Если f≠0, то φ однозначно представима в виде СДНФ: . Если f≠1, то φ однозначно представима в виде СКНФ: .
Приведение ДНФ к СДНФ:
Данную формулу приводим к ДНФ
Если в конъюнкт входит некоторая переменная вместе со своим отрицанием, то этот конъюнкт удаляется из ДНФ
Если в конъюнкт одна и та же литера xδ входит несколько раз, то мы удаляем их все кроме одной
Если в некоторый конъюнкт не входит переменная y, то заменяем его на эквивалентную формулу и применяем закон дистрибутивности
Если в полученном ДНФ имеется несколько одинаковых конституент единицы, то оставляем только одну из них. В результате получается СДНФ.
Приведение КНФ к СКНФ:
Данную формулу приводим к КНФ
Если в дизъюнкт входит некоторая переменная вместе со своим отрицанием, то этот дизъюнкт удаляется из КНФ
Если в дизъюнкт одна и та же литера xδ входит несколько раз, то мы удаляем их все кроме одной
Если в некоторый дизъюнкт не входит переменная y, то заменяем его на эквивалентную формулу и применяем закон дистрибутивности
Если в полученном КНФ имеется несколько одинаковых конституент нуля, то оставляем только одну из них. В результате получается СКНФ.
- Множества. Основные операции над множествами и их свойства. Диаграммы Венна. Декартово произведение множеств.
- Отношения и бинарные отношения, область определения, область значения, обратные отношения. Произведение отношений.
- Функции. Инъекции, сюръекции, биекции. Понятие последовательности.
- Множество натуральных чисел. Два подхода к определению множества натуральных чисел. Аксиомы Дедекинда-Пеано. Принцип математической индукции.
- Понятие мощности множества. Сравнение мощностей. Теорема Кантора-Берштейна. Операции над кардинальными числами.
- Конечные, счетные, континуальные множества. Мощность булеана.
- Матрицы бинарных отношений и их свойства. Специальные бинарные отношения.
- Отношения эквивалентности и разбиения. Фактор-множества. Матрица отношения эквивалентности.
- Отношения порядка. Максимальные и минимальные, наибольший и наименьший элементы частично упорядоченного множества. Диаграммы Хассе. Линейно и вполне упорядоченные множества.
- Алгебраические системы: определение и примеры. Понятие полугруппы, моноида, группы; задание с помощью таблицы Кэли.
- Морфизмы алгебраических систем.
- Подсистемы. Термы сигнатуры ∑. Подсистема, порожденная множеством, ее структура.
- Конгруэнции, фактор-алгебры, теорема о гомоморфизме.
- 17.Многообразия. Теорема Биркгофа.
- Решетки. Дистрибутивные решетки. Критерий дистрибутивности.
- Булевы алгебры. Теорема Стоуна. Принцип двойственности для булевых алгебр.
- Булево кольцо.
- 18. Алгебры отношений. Реляционные алгебры.
- 27. Виды и способы задания графов.
- 28. Подграфы и части графа. Операции над графами. N-Мерные кубы.
- Объединение: .
- 29. Маршруты, циклы, цепи. Достижимость и связность (матрицы достижимости, контрдостижимости, связности).
- 30. Расстояние в графах. Центральные и периферийные вершины.
- 31. Взвешенное расстояние. Алгоритм Форда-Беллмана.
- 32. Степени вершин. Эйлеровы графы, циклы, цепи. Алгоритм построения эйлерова цикла.
- 33. Гамильтоновы графы. Постановка задачи коммивояжера.
- 34. Деревья, леса. Остовы графов. Цикломатическое число, коранг. Алгоритм построения остова минимального веса. Обходы графов по глубине и ширине.
- 35. Упорядоченные и бинарные деревья. Соответствия между ними.
- 36. Фундаментальные циклы, разрезы. Матрицы фундаментальных циклов, разрезов.
- 37. Раскраска графов. Планарные графы.
- 38. Формулы алгебры логики, их таблицы истинности.
- 39. Булевы функции, способы их задания. Представления булевых функций формулами.
- 40. Эквивалентность формул.
- 41. Двухэлементная булева алгебра. Алгебра булевых функций. Фактор-алгебра алгебры формул.
- 42. Дизъюнктивные и конъюнктивные нормальные формы. Алгоритм приведения формулы к днф и кнф.
- 43. Теорема Шеннона. Теорема о функциональной полноте. Способы построения сднф и скнф.
- 44. Импликанты, простые импликанты. Сокращенные, тупиковые, минимальные нормальные формы. Алгоритм Квайна построения мднф.
- 45. Карты Карно. Построение мднф с помощью карт Карно.
- 46. Принцип двойственности. Самодвойственные функции.
- 47. Теорема Жегалкина. Способы построения полиномов Жегалкина. Линейные функции.
- 48. Классы Поста. Полные системы булевых функций. Теорема Поста. Базисы.
- 49. Логические сети. Реализация булевых функций контактными схемами и схемами из функциональных элементов.