37. Раскраска графов. Планарные графы.
Пусть G=<M,R> - неорграф без петель. Раскраской (вершин) графа G называют такое задание цветов вершинам G, что если [a,b] – ребро, то вершины a и b имеют различные цвета. Хроматическим числом χ(G) графа G называется минимальное число цветов, требующееся для раскраски графа G.
Раскраска ребер в мультиграфе G может быть определена с помощью раскраски вершин реберного мультиграфа L(G). Для произвольного неориентированного мультиграфа G=<M,U,P> реберным мультиграфом называется тройка L(G)=<U,M,P’>, где , и тогда и только тогда, когда в мультиграфе G вершина u является концом ребер u и v.
Неорграф G называется бихроматическим, если χ(G)=2. Неорграф G=<M,R> называется двудольным, если множество всех ребер графа G образует разрез графа G, т.е. для некоторого разбиения множества вершин {M1,M2} концы любого ребра принадлежат разным частям разбиения.
Теорема: Пусть G – неорграф без петель, имеющий хотя бы одно ребро. Тогда следующие условия эквивалентны:
G – бихроматический граф;
G – двудольный граф;
G не содержит циклов нечетной длины.
Следствие: Если G – лес, то χ(G)≤2.
Теорема: Для любого неорграфа без петель выполняется неравенство χ(G)≤deg(G)+1.
Алгоритм последовательной раскраски:
Произвольная вершина a1 графа G принимает цвет 1.
Если вершины a1,…,ai раскрашены l цветами 1,2,…,l, l≤2, то новой произвольно взятой вершине ai+1 припишем миимальный цвет, не использованный при раскраске вершин из множества {aj|ρ(aj,ai+1)=1,j<i}.
Неорграф G называется планарным, если его можно изобразить на плоскости так, что никакие два ребра не будут иметь общих точек, кроме, может быть, общего конца этих ребер. Такое изображение графа называется плоским.
Рассмотрим операцию подразбиения ребра в графе G=<M,R>. После подразбиения ребра [a,b] из R получается граф G’=<M’,R’>, где , , т.е. ребро [a,b] заменяется на (a,b)-цепь длины два. Два графа называются гомеоморфными, если их можно получить из одного графа с помощью последовательности подразбиений ребер.
Критерий планарности (теорема Понтрягина-Куратовского): Граф G планарен тогда и только тогда, когда G не содержит подграфа, гомеоморфного K5 или K3,3 (или подграфов, стягиваемых к K5 или K3,3, т.е. получаемых последовательным отождествлением связанных друг с другом вершин).
Теорема: Любой конечный граф может быть расположен в трехмерном пространстве без пересечения ребер.
Если G – планарный граф, то χ(G)≤4.
Толщина графа – минимальное количество плоскостей, в которых можно осуществить раскладку графа без пересечений.
Минимальное число ребер, которые нужно удалить из графа для его плоского отображения называют числом планарности графа.
Yandex.RTB R-A-252273-3
- Множества. Основные операции над множествами и их свойства. Диаграммы Венна. Декартово произведение множеств.
- Отношения и бинарные отношения, область определения, область значения, обратные отношения. Произведение отношений.
- Функции. Инъекции, сюръекции, биекции. Понятие последовательности.
- Множество натуральных чисел. Два подхода к определению множества натуральных чисел. Аксиомы Дедекинда-Пеано. Принцип математической индукции.
- Понятие мощности множества. Сравнение мощностей. Теорема Кантора-Берштейна. Операции над кардинальными числами.
- Конечные, счетные, континуальные множества. Мощность булеана.
- Матрицы бинарных отношений и их свойства. Специальные бинарные отношения.
- Отношения эквивалентности и разбиения. Фактор-множества. Матрица отношения эквивалентности.
- Отношения порядка. Максимальные и минимальные, наибольший и наименьший элементы частично упорядоченного множества. Диаграммы Хассе. Линейно и вполне упорядоченные множества.
- Алгебраические системы: определение и примеры. Понятие полугруппы, моноида, группы; задание с помощью таблицы Кэли.
- Морфизмы алгебраических систем.
- Подсистемы. Термы сигнатуры ∑. Подсистема, порожденная множеством, ее структура.
- Конгруэнции, фактор-алгебры, теорема о гомоморфизме.
- 17.Многообразия. Теорема Биркгофа.
- Решетки. Дистрибутивные решетки. Критерий дистрибутивности.
- Булевы алгебры. Теорема Стоуна. Принцип двойственности для булевых алгебр.
- Булево кольцо.
- 18. Алгебры отношений. Реляционные алгебры.
- 27. Виды и способы задания графов.
- 28. Подграфы и части графа. Операции над графами. N-Мерные кубы.
- Объединение: .
- 29. Маршруты, циклы, цепи. Достижимость и связность (матрицы достижимости, контрдостижимости, связности).
- 30. Расстояние в графах. Центральные и периферийные вершины.
- 31. Взвешенное расстояние. Алгоритм Форда-Беллмана.
- 32. Степени вершин. Эйлеровы графы, циклы, цепи. Алгоритм построения эйлерова цикла.
- 33. Гамильтоновы графы. Постановка задачи коммивояжера.
- 34. Деревья, леса. Остовы графов. Цикломатическое число, коранг. Алгоритм построения остова минимального веса. Обходы графов по глубине и ширине.
- 35. Упорядоченные и бинарные деревья. Соответствия между ними.
- 36. Фундаментальные циклы, разрезы. Матрицы фундаментальных циклов, разрезов.
- 37. Раскраска графов. Планарные графы.
- 38. Формулы алгебры логики, их таблицы истинности.
- 39. Булевы функции, способы их задания. Представления булевых функций формулами.
- 40. Эквивалентность формул.
- 41. Двухэлементная булева алгебра. Алгебра булевых функций. Фактор-алгебра алгебры формул.
- 42. Дизъюнктивные и конъюнктивные нормальные формы. Алгоритм приведения формулы к днф и кнф.
- 43. Теорема Шеннона. Теорема о функциональной полноте. Способы построения сднф и скнф.
- 44. Импликанты, простые импликанты. Сокращенные, тупиковые, минимальные нормальные формы. Алгоритм Квайна построения мднф.
- 45. Карты Карно. Построение мднф с помощью карт Карно.
- 46. Принцип двойственности. Самодвойственные функции.
- 47. Теорема Жегалкина. Способы построения полиномов Жегалкина. Линейные функции.
- 48. Классы Поста. Полные системы булевых функций. Теорема Поста. Базисы.
- 49. Логические сети. Реализация булевых функций контактными схемами и схемами из функциональных элементов.