Функции. Инъекции, сюръекции, биекции. Понятие последовательности.
Отношение называется функцией или отображением из множества А в множество В, если и из (x,y1) є f, (x,y2) є f следует y1=y2. Если вместо выполняется , то f называется частичной функцией. Функция f из А в В обозначается через или . Если (x,y) є f, то пишем y=f(x) или . Функция называется разнозначной инъективной (инъекцией) или 1-1 функцией если из условия, что выполняется х1≠х2, следует y1≠y2. Функция называется функцией из А на В или сюръекцией, если . Функция называется взаимно однозначным соответствием между множествами А и В или биекцией, если она инъективна и сюръективна одновременно.
Биекция называется подстановкой.
Утверждения:
Если , , то
Если , то
Если f и g - инъекции, то f•g – инъекция.
Доказательство: Предположим противное, т.е. найдутся элементы x1, x2, y такие, что х1≠х2, (x1,y) є f•g и (x2,y) є f•g, т.е. g(f(x1))=y=g(f(x2)). В силу разнозначности f имеем f(x1)≠f(x2). Отсюда в силу разнозначности g получаем g(f(x1))≠g(f(x2)), а это противоречит предположению.
Если f,g – сюръекции, то f•g – сюръекция
Доказательство: Нужно доказать, что для любого с существует а такое, что f•g(a)=c. Т.к. g – сюръекция, то существует b, для которого g(b)=c, а т.к. f – сюръекция, то для любого b существует а такое, что f(a)=b. Тогда f•g(a)=g(f(a))=c
Если f и g – биекции, то f•g – биекция
Если , то
Функция называется последовательностью. Её можно представить в виде f(0)=b0, f(1)=b1,…, f(n)=bn.
-
Yandex.RTB R-A-252273-3
Содержание
- Множества. Основные операции над множествами и их свойства. Диаграммы Венна. Декартово произведение множеств.
- Отношения и бинарные отношения, область определения, область значения, обратные отношения. Произведение отношений.
- Функции. Инъекции, сюръекции, биекции. Понятие последовательности.
- Множество натуральных чисел. Два подхода к определению множества натуральных чисел. Аксиомы Дедекинда-Пеано. Принцип математической индукции.
- Понятие мощности множества. Сравнение мощностей. Теорема Кантора-Берштейна. Операции над кардинальными числами.
- Конечные, счетные, континуальные множества. Мощность булеана.
- Матрицы бинарных отношений и их свойства. Специальные бинарные отношения.
- Отношения эквивалентности и разбиения. Фактор-множества. Матрица отношения эквивалентности.
- Отношения порядка. Максимальные и минимальные, наибольший и наименьший элементы частично упорядоченного множества. Диаграммы Хассе. Линейно и вполне упорядоченные множества.
- Алгебраические системы: определение и примеры. Понятие полугруппы, моноида, группы; задание с помощью таблицы Кэли.
- Морфизмы алгебраических систем.
- Подсистемы. Термы сигнатуры ∑. Подсистема, порожденная множеством, ее структура.
- Конгруэнции, фактор-алгебры, теорема о гомоморфизме.
- 17.Многообразия. Теорема Биркгофа.
- Решетки. Дистрибутивные решетки. Критерий дистрибутивности.
- Булевы алгебры. Теорема Стоуна. Принцип двойственности для булевых алгебр.
- Булево кольцо.
- 18. Алгебры отношений. Реляционные алгебры.
- 27. Виды и способы задания графов.
- 28. Подграфы и части графа. Операции над графами. N-Мерные кубы.
- Объединение: .
- 29. Маршруты, циклы, цепи. Достижимость и связность (матрицы достижимости, контрдостижимости, связности).
- 30. Расстояние в графах. Центральные и периферийные вершины.
- 31. Взвешенное расстояние. Алгоритм Форда-Беллмана.
- 32. Степени вершин. Эйлеровы графы, циклы, цепи. Алгоритм построения эйлерова цикла.
- 33. Гамильтоновы графы. Постановка задачи коммивояжера.
- 34. Деревья, леса. Остовы графов. Цикломатическое число, коранг. Алгоритм построения остова минимального веса. Обходы графов по глубине и ширине.
- 35. Упорядоченные и бинарные деревья. Соответствия между ними.
- 36. Фундаментальные циклы, разрезы. Матрицы фундаментальных циклов, разрезов.
- 37. Раскраска графов. Планарные графы.
- 38. Формулы алгебры логики, их таблицы истинности.
- 39. Булевы функции, способы их задания. Представления булевых функций формулами.
- 40. Эквивалентность формул.
- 41. Двухэлементная булева алгебра. Алгебра булевых функций. Фактор-алгебра алгебры формул.
- 42. Дизъюнктивные и конъюнктивные нормальные формы. Алгоритм приведения формулы к днф и кнф.
- 43. Теорема Шеннона. Теорема о функциональной полноте. Способы построения сднф и скнф.
- 44. Импликанты, простые импликанты. Сокращенные, тупиковые, минимальные нормальные формы. Алгоритм Квайна построения мднф.
- 45. Карты Карно. Построение мднф с помощью карт Карно.
- 46. Принцип двойственности. Самодвойственные функции.
- 47. Теорема Жегалкина. Способы построения полиномов Жегалкина. Линейные функции.
- 48. Классы Поста. Полные системы булевых функций. Теорема Поста. Базисы.
- 49. Логические сети. Реализация булевых функций контактными схемами и схемами из функциональных элементов.