36. Фундаментальные циклы, разрезы. Матрицы фундаментальных циклов, разрезов.
Пусть G=<M,R> - неорграф, имеющий n вершин, m ребер и c компонент связности, Т – остов графа G, имеет υ*(G)=n-c ветвей и υ(G)=m-n+c хорд. Если к лесу T добавить произвольную хорду υi, то в полученном графе найдется ровно один цикл Ci, который называется фундаментальным циклом графа G относительно хорды υi и остова T. Множество {C1,..,Cm-n+c} называется фундаментальным множеством циклов. Мощность этого множества равна цикломатическому числу υ(G)=m-n+c.
Фундаментальное множество циклов можно задать с помощью матрицы фундаментальных циклов С=(aij), где . Т.к. каждый фундаментальный цикл содержит ровно одну хорду, то матрица С=(С1|C2), где С1 – единичная матрица порядка υ(G).
Пусть G=<M,R> - неорграф, m={M1,M2} – разбиение множества М. Разрезом графа G по разбиению m называется множество всех ребер, соединяющих вершины из M1 c вершинными из M2. В связном графе любой разрез непуст.
Непустой разрез К неорграфа G называется простым разрезом или коциклом, если любое непустое собственное подмножество не является разрезом ни по какому разбиению. Т.е. из К нельзя удалить ни одно ребро так, чтобы полученное множество было непустым разрезом.
Теорема: В связном неорграфе остовное дерево имеет по крайней мере одно общее ребро с любым из разрезов графа.
Теорема: В связном неорграфе любой цикл имеет любым разрезом четное число общих ребер.
Рассмотрим неорграф G с остовом Т. Пусть u1,…,un-c – ветви остова Т. Удаляя из Т произвольную ветвь ui получаем лес с (с+1) компонентой связности, т.е. каждое ребро ui является разрезом остова Т по некоторому разбиению {М1,М2}. В графе G могут найтись еще ребра vi1,…,vij (хорды Т), также являющиеся разрезами по {M1,M2}. Множество Ki={ui,vi1,…,vij} образует простой разрез, который называется фундаментальным разрезом графа G относительно ветви ui остова Т. Множество {K1,…,Kn-c} называется фундаментальным множество коциклов. Мощность этого множества равна корангу υ*(G)=n-c. Фундаментальное множество коциклов можно задать матрицей K=(bij), где . Поскольку каждый фундаментальный разрез содержит одну ветвь, то матрица К=(K1|K2), где К2 – единичная матрица порядка υ*(G).
Yandex.RTB R-A-252273-3
- Множества. Основные операции над множествами и их свойства. Диаграммы Венна. Декартово произведение множеств.
- Отношения и бинарные отношения, область определения, область значения, обратные отношения. Произведение отношений.
- Функции. Инъекции, сюръекции, биекции. Понятие последовательности.
- Множество натуральных чисел. Два подхода к определению множества натуральных чисел. Аксиомы Дедекинда-Пеано. Принцип математической индукции.
- Понятие мощности множества. Сравнение мощностей. Теорема Кантора-Берштейна. Операции над кардинальными числами.
- Конечные, счетные, континуальные множества. Мощность булеана.
- Матрицы бинарных отношений и их свойства. Специальные бинарные отношения.
- Отношения эквивалентности и разбиения. Фактор-множества. Матрица отношения эквивалентности.
- Отношения порядка. Максимальные и минимальные, наибольший и наименьший элементы частично упорядоченного множества. Диаграммы Хассе. Линейно и вполне упорядоченные множества.
- Алгебраические системы: определение и примеры. Понятие полугруппы, моноида, группы; задание с помощью таблицы Кэли.
- Морфизмы алгебраических систем.
- Подсистемы. Термы сигнатуры ∑. Подсистема, порожденная множеством, ее структура.
- Конгруэнции, фактор-алгебры, теорема о гомоморфизме.
- 17.Многообразия. Теорема Биркгофа.
- Решетки. Дистрибутивные решетки. Критерий дистрибутивности.
- Булевы алгебры. Теорема Стоуна. Принцип двойственности для булевых алгебр.
- Булево кольцо.
- 18. Алгебры отношений. Реляционные алгебры.
- 27. Виды и способы задания графов.
- 28. Подграфы и части графа. Операции над графами. N-Мерные кубы.
- Объединение: .
- 29. Маршруты, циклы, цепи. Достижимость и связность (матрицы достижимости, контрдостижимости, связности).
- 30. Расстояние в графах. Центральные и периферийные вершины.
- 31. Взвешенное расстояние. Алгоритм Форда-Беллмана.
- 32. Степени вершин. Эйлеровы графы, циклы, цепи. Алгоритм построения эйлерова цикла.
- 33. Гамильтоновы графы. Постановка задачи коммивояжера.
- 34. Деревья, леса. Остовы графов. Цикломатическое число, коранг. Алгоритм построения остова минимального веса. Обходы графов по глубине и ширине.
- 35. Упорядоченные и бинарные деревья. Соответствия между ними.
- 36. Фундаментальные циклы, разрезы. Матрицы фундаментальных циклов, разрезов.
- 37. Раскраска графов. Планарные графы.
- 38. Формулы алгебры логики, их таблицы истинности.
- 39. Булевы функции, способы их задания. Представления булевых функций формулами.
- 40. Эквивалентность формул.
- 41. Двухэлементная булева алгебра. Алгебра булевых функций. Фактор-алгебра алгебры формул.
- 42. Дизъюнктивные и конъюнктивные нормальные формы. Алгоритм приведения формулы к днф и кнф.
- 43. Теорема Шеннона. Теорема о функциональной полноте. Способы построения сднф и скнф.
- 44. Импликанты, простые импликанты. Сокращенные, тупиковые, минимальные нормальные формы. Алгоритм Квайна построения мднф.
- 45. Карты Карно. Построение мднф с помощью карт Карно.
- 46. Принцип двойственности. Самодвойственные функции.
- 47. Теорема Жегалкина. Способы построения полиномов Жегалкина. Линейные функции.
- 48. Классы Поста. Полные системы булевых функций. Теорема Поста. Базисы.
- 49. Логические сети. Реализация булевых функций контактными схемами и схемами из функциональных элементов.