Отношения эквивалентности и разбиения. Фактор-множества. Матрица отношения эквивалентности.
Отношение Р называется отношением эквивалентности, если Р рефлексивно, симметрично и транзитивно. Обозначается Е и ~ (тильда).
Пусть Е – эквивалентность на множестве А. Классом эквивалентности элемента называется множество E(x)={y | xEy}. Классы эквивалентности Е также называют Е-классами. Множество называется фактор-множеством множества А по отношению к Е.
Утверждение: Множество всех классов эквивалентности образует разбиение множества А (система непересекающихся подмножеств, объединение которых совпадает с А). Если {Ai} – некоторое разбиение множества А, то по этому разбиению можно однозначно определить эквивалентность. Т.е. xEy тогда и только тогда, когда x, y принадлежат Аi для некоторого i.
Доказательство:
Пусть Е – отношение эквивалентности на множестве А, А/Е – фактор-множество множества А по Е. Т.к. в силу рефлексивности Е выполнимо для любого , то каждое множество из А/Е непустое и . Чтобы установить, что А/Е – разбиение множества А, покажем, что если , то E(x)=E(y).
Пусть и , т.е. . Т.к. Е симметрично, то . Из транзитивности Е следует , т.е. . Таким образом, . Обратное включение доказывается аналогично.
Предположим, что Е – отношение на множестве А, соответствующее разбиению R={Ai}. Рефлексивность и симметричность Е очевидны. Пусть выполняется xEy и yEz. Тогда , где . Поскольку и , то Аi=Aj. Следовательно Е транзитивно. Е – эквивалентность.
Матрица отношения эквивалентности имеет блочно-диагональный вид. Или приводится к нему путем одновременных перестановок строк и столбцов.
-
Yandex.RTB R-A-252273-3
Содержание
- Множества. Основные операции над множествами и их свойства. Диаграммы Венна. Декартово произведение множеств.
- Отношения и бинарные отношения, область определения, область значения, обратные отношения. Произведение отношений.
- Функции. Инъекции, сюръекции, биекции. Понятие последовательности.
- Множество натуральных чисел. Два подхода к определению множества натуральных чисел. Аксиомы Дедекинда-Пеано. Принцип математической индукции.
- Понятие мощности множества. Сравнение мощностей. Теорема Кантора-Берштейна. Операции над кардинальными числами.
- Конечные, счетные, континуальные множества. Мощность булеана.
- Матрицы бинарных отношений и их свойства. Специальные бинарные отношения.
- Отношения эквивалентности и разбиения. Фактор-множества. Матрица отношения эквивалентности.
- Отношения порядка. Максимальные и минимальные, наибольший и наименьший элементы частично упорядоченного множества. Диаграммы Хассе. Линейно и вполне упорядоченные множества.
- Алгебраические системы: определение и примеры. Понятие полугруппы, моноида, группы; задание с помощью таблицы Кэли.
- Морфизмы алгебраических систем.
- Подсистемы. Термы сигнатуры ∑. Подсистема, порожденная множеством, ее структура.
- Конгруэнции, фактор-алгебры, теорема о гомоморфизме.
- 17.Многообразия. Теорема Биркгофа.
- Решетки. Дистрибутивные решетки. Критерий дистрибутивности.
- Булевы алгебры. Теорема Стоуна. Принцип двойственности для булевых алгебр.
- Булево кольцо.
- 18. Алгебры отношений. Реляционные алгебры.
- 27. Виды и способы задания графов.
- 28. Подграфы и части графа. Операции над графами. N-Мерные кубы.
- Объединение: .
- 29. Маршруты, циклы, цепи. Достижимость и связность (матрицы достижимости, контрдостижимости, связности).
- 30. Расстояние в графах. Центральные и периферийные вершины.
- 31. Взвешенное расстояние. Алгоритм Форда-Беллмана.
- 32. Степени вершин. Эйлеровы графы, циклы, цепи. Алгоритм построения эйлерова цикла.
- 33. Гамильтоновы графы. Постановка задачи коммивояжера.
- 34. Деревья, леса. Остовы графов. Цикломатическое число, коранг. Алгоритм построения остова минимального веса. Обходы графов по глубине и ширине.
- 35. Упорядоченные и бинарные деревья. Соответствия между ними.
- 36. Фундаментальные циклы, разрезы. Матрицы фундаментальных циклов, разрезов.
- 37. Раскраска графов. Планарные графы.
- 38. Формулы алгебры логики, их таблицы истинности.
- 39. Булевы функции, способы их задания. Представления булевых функций формулами.
- 40. Эквивалентность формул.
- 41. Двухэлементная булева алгебра. Алгебра булевых функций. Фактор-алгебра алгебры формул.
- 42. Дизъюнктивные и конъюнктивные нормальные формы. Алгоритм приведения формулы к днф и кнф.
- 43. Теорема Шеннона. Теорема о функциональной полноте. Способы построения сднф и скнф.
- 44. Импликанты, простые импликанты. Сокращенные, тупиковые, минимальные нормальные формы. Алгоритм Квайна построения мднф.
- 45. Карты Карно. Построение мднф с помощью карт Карно.
- 46. Принцип двойственности. Самодвойственные функции.
- 47. Теорема Жегалкина. Способы построения полиномов Жегалкина. Линейные функции.
- 48. Классы Поста. Полные системы булевых функций. Теорема Поста. Базисы.
- 49. Логические сети. Реализация булевых функций контактными схемами и схемами из функциональных элементов.