Отношения и бинарные отношения, область определения, область значения, обратные отношения. Произведение отношений.
n-местным отношением или n-местным предикатом Р на множествах А1, А2,…, Аn называется любое подмножество прямого произведения . Другими словами, элементы х1, х2,…, хn (где хi є Ai) связаны соотношением Р тогда и только тогда, когда (х1, х2,…, хn) є Р. При n=1 отношение Р является подмножеством множества А1 и называется унарным отношением или свойством.
При n=2 отношение Р называется бинарным отношением или соответствием.
Пример: Если А={2,3,4,5,6,7,8}, то бинарное отношение Р={(x,y) | x,y є A, x делит y и х≤3} можно записать в виде Р = {(2,2),(2,4),(2,6),(2,8),(3,3),(3,6)}.
Если Р={(x, y) | x, y є R, x≤y}, то запись xPy означает, что x≤y. idA = {(x,x) | x є A} – тождественное отношение, idA принадлежит А2.
U = A2 – универсальное отношение. Пусть Р – некоторое бинарное отношение. Областью определения отношения Р называется множество δР = {x | (x,y) є P для некоторого у}. Областью значений отношения Р называют множество ρР = {y | (x,y) є P для некторого х}. Обратным отношением называется множество Р-1 = {(y,x) | (x,y) є P}.
Образом множества Х относительно предиката Р называется множество Р(Х)={y | (x,y) є P для некоторого х є Х}
Прообразом множества относительно предиката Р называется множество Р-1(Х) или, другими словами, образ множества Х относительно предиката Р-1.
Произведением бинарных отношений и или композицией Р1 и Р2 называется множество Р1•Р2 = {(x,y) | x є A, y є C, и найдется элемент z є B такой, что (x,z) є Р1 и (z,y) є P2}.
Свойства:
Ассоциативность композиции: (P•Q)•R=P•(Q•R)
Доказательство: Пусть (x,y) є (P•Q)•R. Тогда для некоторых u и v имеем (x,u) є P, (u,v) є Q, (v,y) є R. Тогда (u,y) є Q•R и (x,y) є P•(Q•R). Включение P•(Q•R) є (P•Q)•R доказывается аналогично.
(P•Q)-1=Q-1•P-1
Доказательство: Предположим, что (x,y) є (P•Q)-1. Тогда (y,x) є P•Q, и, следовательно, (y,z) є P и (z,x) є Q для некоторого элемента z. Значит (x,z) є Q-1, (z,y) є P-1 и тогда (x,y) є Q-1•P-1. Обратное включение доказывается аналогично.
P•Q ≠ Q•P
(P-1)-1=P
Доказательство: Если (x,y) є P, то (y,x) є Р-1, но тогда (x,y) є (Р-1)-1.
Yandex.RTB R-A-252273-3
- Множества. Основные операции над множествами и их свойства. Диаграммы Венна. Декартово произведение множеств.
- Отношения и бинарные отношения, область определения, область значения, обратные отношения. Произведение отношений.
- Функции. Инъекции, сюръекции, биекции. Понятие последовательности.
- Множество натуральных чисел. Два подхода к определению множества натуральных чисел. Аксиомы Дедекинда-Пеано. Принцип математической индукции.
- Понятие мощности множества. Сравнение мощностей. Теорема Кантора-Берштейна. Операции над кардинальными числами.
- Конечные, счетные, континуальные множества. Мощность булеана.
- Матрицы бинарных отношений и их свойства. Специальные бинарные отношения.
- Отношения эквивалентности и разбиения. Фактор-множества. Матрица отношения эквивалентности.
- Отношения порядка. Максимальные и минимальные, наибольший и наименьший элементы частично упорядоченного множества. Диаграммы Хассе. Линейно и вполне упорядоченные множества.
- Алгебраические системы: определение и примеры. Понятие полугруппы, моноида, группы; задание с помощью таблицы Кэли.
- Морфизмы алгебраических систем.
- Подсистемы. Термы сигнатуры ∑. Подсистема, порожденная множеством, ее структура.
- Конгруэнции, фактор-алгебры, теорема о гомоморфизме.
- 17.Многообразия. Теорема Биркгофа.
- Решетки. Дистрибутивные решетки. Критерий дистрибутивности.
- Булевы алгебры. Теорема Стоуна. Принцип двойственности для булевых алгебр.
- Булево кольцо.
- 18. Алгебры отношений. Реляционные алгебры.
- 27. Виды и способы задания графов.
- 28. Подграфы и части графа. Операции над графами. N-Мерные кубы.
- Объединение: .
- 29. Маршруты, циклы, цепи. Достижимость и связность (матрицы достижимости, контрдостижимости, связности).
- 30. Расстояние в графах. Центральные и периферийные вершины.
- 31. Взвешенное расстояние. Алгоритм Форда-Беллмана.
- 32. Степени вершин. Эйлеровы графы, циклы, цепи. Алгоритм построения эйлерова цикла.
- 33. Гамильтоновы графы. Постановка задачи коммивояжера.
- 34. Деревья, леса. Остовы графов. Цикломатическое число, коранг. Алгоритм построения остова минимального веса. Обходы графов по глубине и ширине.
- 35. Упорядоченные и бинарные деревья. Соответствия между ними.
- 36. Фундаментальные циклы, разрезы. Матрицы фундаментальных циклов, разрезов.
- 37. Раскраска графов. Планарные графы.
- 38. Формулы алгебры логики, их таблицы истинности.
- 39. Булевы функции, способы их задания. Представления булевых функций формулами.
- 40. Эквивалентность формул.
- 41. Двухэлементная булева алгебра. Алгебра булевых функций. Фактор-алгебра алгебры формул.
- 42. Дизъюнктивные и конъюнктивные нормальные формы. Алгоритм приведения формулы к днф и кнф.
- 43. Теорема Шеннона. Теорема о функциональной полноте. Способы построения сднф и скнф.
- 44. Импликанты, простые импликанты. Сокращенные, тупиковые, минимальные нормальные формы. Алгоритм Квайна построения мднф.
- 45. Карты Карно. Построение мднф с помощью карт Карно.
- 46. Принцип двойственности. Самодвойственные функции.
- 47. Теорема Жегалкина. Способы построения полиномов Жегалкина. Линейные функции.
- 48. Классы Поста. Полные системы булевых функций. Теорема Поста. Базисы.
- 49. Логические сети. Реализация булевых функций контактными схемами и схемами из функциональных элементов.