Качественные методы описания систем
Качественные методы системного анализа применяются, когда отсутствуют описания закономерностей систем в виде аналитических зависимостей.
Методы типа мозговой атаки. Концепция «мозговой атаки» получила широкое распространение с начала 50-х годов как метод систематической тренировки творческого мышления, нацеленный на открытие новых идей и достижение согласия группы людей на основе интуитивного мышления. Методы этого типа известны также под названиями «мозговой штурм», «конференция идей», а в последнее время наибольшее распространение получил термин «коллективная генерация идей» (КГИ).
Обычно при проведении мозговой атаки или сессий КГИ стараются выполнять определенные правила, суть которых:
обеспечить как можно большую свободу мышления участников КГИ и высказывания ими новых идей;
приветствуются любые идеи, если вначале они кажутся сомнительными или абсурдными (обсуждение и оценка идей производится позднее);
не допускается критика, не объявляется ложной и не прекращается обсуждение ни одной идеи;
желательно высказывать как можно больше идей, особенно нетривиальных.
Подобием сессий КГИ можно считать разного рода совещания — конструктораты, заседания научных советов по проблемам, заседания специально создаваемых временных комиссий и другие собрания компетентных специалистов.
Методы типа сценариев. Методы подготовки и согласования представлений о проблеме или анализируемом объекте, изложенные в письменном виде, получили название сценария. Первоначально этот метод предполагал подготовку текста, содержащего логическую последовательность событий или возможные варианты решения проблемы, развернутые во времени. Однако позднее обязательное требование явно выраженных временных координат было снято, и сценарием стали называть любой документ, содержащий анализ рассматриваемой проблемы или предложения по ее решению, по развитию системы независимо от того, в какой форме он представлен. Как правило, предложения для подготовки подобных документов пишутся вначале индивидуально, а затем формируется согласованный текст.
На практике по типу сценариев разрабатывались прогнозы в некоторых отраслях промышленности. В настоящее время разновидностью сценариев можно считать предложения к комплексным программам развития отраслей народного хозяйства, подготавливаемые организациями или специальными комиссиями.
Сценарий является предварительной информацией, на основе которой проводится дальнейшая работа по прогнозированию развития отрасли или по разработке вариантов проекта. Он может быть подвергнут анализу, чтобы исключить из дальнейшего рассмотрения то, что в учитываемом периоде находится на достаточном уровне развития, если речь идет о прогнозе, или, напротив, то, что не может быть обеспечено в планируемом периоде, если речь идет о проекте. Таким образом, сценарий помогает составить представление о проблеме, а затем приступить к более формализованному представлению системы в виде графиков, таблиц для проведения экспертного опроса и других методов системного анализа.
Методы экспертных оценок. Термин «эксперт» происходит от латинского слова означающего «опытный».
При использовании экспертных оценок обычно предполагается, что мнение группы экспертов надежнее, чем мнение отдельного эксперта. В некоторых теоретических исследованиях отмечается, что это предположение не является очевидным.
Все множество проблем, решаемых методами экспертных оценок, делится на два класса. К первому относятся такие, в отношении которых имеется достаточное обеспечение информацией. При этом методы опроса и обработки основываются на использовании принципа «хорошего измерителя», т. е. эксперт —качественный источник информации; групповое мнение экспертов близко к истинному решению. Ко второму классу относятся проблемы, в отношении которых знаний для уверенности в справедливости указанных гипотез недостаточно. В этом случае экспертов уже нельзя рассматривать как «хороших измерителей» и необходимо осторожно подходить к обработке результатов экспертизы во избежание больших ошибок. В литературе в основном рассматриваются вопросы экспертного оценивания для решения задач первого класса.
При обработке материалов коллективной экспертной оценки используются методы теории ранговой корреляции. Для количественной оценки степени согласованности мнений экспертов применяется коэффициент конкордации
где
—количество экспертов, j= — количество рассматриваемых свойств, — место, которое заняло-е свойство в ранжировкеj-м экспертом; di — отклонение суммы рангов по -му свойству от среднего арифметического сумм рангов по n свойствам.
Коэффициент конкордации W позволяет оценить, насколько согласованы между собой ряды предпочтительности, построенные каждым экспертом. Его значение находится в пределах0£W£1; W=0 означает полную противоположность, а W= 1 —полное совпадение ранжировок. Практически достоверность считается хорошей, если W= 0,7...0,8.
Небольшое значение коэффициента конкордации, свидетельствующее о слабой согласованности мнений экспертов, является следствием следующих причин: в рассматриваемой совокупности экспертов действительно отсутствует общность мнений; внутри рассматриваемой совокупности экспертов существуют группы с высокой согласованностью мнений, однако обобщенные мнения таких групп противоположны.
Для наглядности представления о степени согласованности мнений двух любых экспертов А и В служит коэффициент парной ранговой корреляции
где — разность (по модулю) величин рангов оценок-го свойства, назначенных экспертами А и В:—показатели связанных рангов оценок экспертов А и В.
Коэффициент парной ранговой корреляции принимает значения —1<<+1. Значение= +1 соответствует полному совпадению оценок в рангах двух экспертов (полная согласованность мнений двух экспертов), а=—1— двум взаимно противоположным ранжировкам важности свойств (мнение одного эксперта противоположно мнению другого).
Методы типа «Дельфи». Характерный для середины XX в. бурный рост науки и техники вызвал большие перемены в отношении к оценкам будущего развития систем. Одним из результатов этого периода в развитии методов анализа сложных систем явилась разработка методов экспертной оценки, известных в литературе как «методы Дельфи». Название этих методов связано с древнегреческим городом Дельфи, где при храме Аполлона с IX в. до н.э. до IV в. н.э. по преданиям существовал Дельфийский оракул.
Суть метода Дельфи заключается в следующем. В отличие от традиционного подхода к достижению согласованности мнений экспертов путем открытой дискуссии метод Дельфи предполагает полный отказ от коллективных обсуждений. Это делается для того, чтобы уменьшить влияние таких психологических факторов, как присоединение к мнению наиболее авторитетного специалиста, нежелание отказаться от публично выраженного мнения, следование за мнением большинства. В методе Дельфи прямые дебаты заменены тщательно разработанной программой последовательных индивидуальных опросов, проводимых обычно в форме анкетирования. Ответы экспертов обобщаются и вместе с новой дополнительной информацией поступают в распоряжение экспертов, после чего они уточняют свои первоначальные ответы. Такая процедура повторяется несколько раз до достижения приемлемой сходимости совокупности высказанных мнений. Результаты эксперимента показали приемлемую сходимость оценок экспертов после пяти туров опроса.
Метод Дельфи первоначально был предложен О. Хелмером как итеративная процедура при проведении мозговой атаки, которая должна помочь снизить влияние психологических факторов при проведении повторных заседаний и повысить объективность результатов. Однако почти одновременно Дельфи-процедуры стали основным средством повышения объективности экспертных опросов с использованием количественных оценок при оценке деревьев цели и при разработке сценариев.
Процедура Дельфи-метода:
в упрощенном виде организуется последовательность циклов мозговой атаки;
в более сложном виде разрабатывается программа последовательных индивидуальных опросов обычно с помощью вопросников, исключая контакты между экспертами, но предусматривающая ознакомление их с мнениями друг друга между турами; вопросники от тура к туру могут уточняться;
в наиболее развитых методиках экспертам присваиваются весовые коэффициенты значимости их мнений, вычисляемые на основе предшествующих опросов, уточняемые от тура к туру и учитываемые при получении обобщенных результатов оценок.
Первое практическое применение метода Дельфи к решению некоторых задач Министерства обороны США во второй половине 40-х годов, показало его эффективность и целесообразность распространения на широкий класс задач, связанных с оценкой будущих событий.
Исследуемые проблемы: научные открытия, рост народонаселения, автоматизация производства, освоение космоса, предотвращение войны, военная техника. Результаты статистической обработки мнений экспертов позволили нарисовать вероятную картину будущего мира в указанных шести аспектах. Была оценена также степень согласованности мнений экспертов, которая оказалась приемлемой после проведения четырех туров опроса.
Недостатки метода Дельфи:
значительный расход времени на проведение экспертизы, связанный с большим количеством последовательных повторений оценок;
необходимость неоднократного пересмотра экспертом своих ответов вызывает у него отрицательную реакцию, что сказывается на результатах экспертизы.
Дальнейшим развитием метода Дельфи являются методы QUWST, SEER, PATTERN.
Методы типа дерева целей. Идея метода дерева целей впервые была предложена Черчменом в связи с проблемами принята решений в промышленности. Термин «дерево целей» подразумевает использование иерархической структуры, полученной путей разделения общей цели на подцели, а их, в свою очередь, на боле) детальные составляющие — новые подцели, функции и т. д. Как правило, этот термин используется для структур, имеющих от ношение строгого древесного порядка, но метод дерева целей используется иногда и применительно к «слабым» иерархиям в которых одна и та же вершина нижележащего уровня может быть одновременно подчинена двум или нескольким вершина» вышележащего уровня.
Древовидные иерархические структуры используются и при исследовании и совершенствовании организационных структур Не всегда разрабатываемое даже для анализа целей дерево может быть представлено в терминах целей. Иногда, например, при анализе целей научных исследований удобнее говорить о дереве направлений прогнозирования. В. М. Глушковым, например, бы. предложен и в настоящее время широко используется термин) «прогнозный граф». При использовании этого понятия появляется возможность более точно определить понятие дерева как связного ориентированного графа, не содержащего петель, каждая пара вершин которого соединяется единственной цепью.
Морфологические методы. Основная идея морфологических методов — систематически находить все «мыслимые» варианты решения проблемы или реализации системы путем комбинирования выделенных элементов или их признаков. Идеи морфологического образа мышления восходят к Аристотелю, Платону, к известной средневековой модели механизации мышления Р. Луллия. В систематизированном виде морфологический подход был разработан и применен впервые швейцарским астрономом Ф. Цвикки и долгое время был известен как метод Цвикки.
Цвикки предложил три метода морфологического исследования.
Первый метод — метод систематического покрытия поля (МСПП), основанный на выделении так называемых опорных пунктов знания в любой исследуемой области и использовании для заполнения поля некоторых сформулированных принципов мышления. Второй — метод отрицания и конструирования (МОК), базирующийся на идее
Цвикки, заключающейся в том, что на пути конструктивного прогресса стоят догмы и компромиссные ограничения, которые есть смысл отрицать, и, следовательно, сформулировав некоторые предложения, полезно заменить их затем на противоположные и использовать при проведении анализа.
Третий — метод морфологического ящика (ММЯ), нашедший наиболее широкое распространение. Идея ММЯ состоит в определении всех «мыслимых» параметров, от которых может зависеть решение проблемы, и представлении их в виде матриц-строк, а затем в определении в этом морфологическом матрице-ящике всех возможных сочетаний параметров по одному из каждой строки. Полученные таким образом варианты могут затем подвергаться оценке и анализу с целью выбора наилучшего. Морфологический ящик может быть не только двумерным. Например, А. Холл использовал для исследования структуры систем трехмерный ящик.
Морфологические ящики Цвикки нашли широкое применение для анализа и разработки прогноза в технике. Для организационных же систем, систем управления такой ящик, который, повидимому, был бы многомерным, практически невозможно построить. Поэтому, используя идею морфологического подхода для моделирования организационных систем, разрабатывают языки моделирования или языки проектирования, которые применяют для порождения возможных ситуаций в системе, возможных вариантов решения и часто — как вспомогательное средство формирования нижних уровней иерархической структуры как при моделировании структуры целей, так и при моделировании организационных структур. Примерами таких языков служат: системно-структурные языки (язык функций и видов структуры, номинально-структурный язык), язык ситуационного управления, языки структурно-лингвистического моделирования.
Методика системного анализа. Методики, реализующие принципы системного анализа в конкретных условиях, направлены на то, чтобы формализовать процесс исследования системы, процесс поставки и решения проблемы. Методика системного анализа разрабатывается и применяется в тех случаях, когда у исследователя нет достаточных сведений о системе, которые позволили бы выбрать адекватный метод формализованного представления системы.
Общим для всех методик системного анализа является формирование вариантов представления системы (процесса решения задачи) и выбор наилучшего варианта. Положив в основу методики системного анализа эти два этапа, их затем можно разделить на под этапы. Например, первый этап можно разделить следующим образом:
1. Отделение (или ограничение) системы от среды.
Выбор подхода к представлению системы.
Формирование вариантов (или одного варианта — что часто делают, если система отображена в виде иерархической структуры) представления системы.
Второй этап можно представить следующими под этапами:
1. Выбор подхода к оценке вариантов.
2. Выбор критериев оценки и ограничений.
3. Проведение оценки.
4. Обработка результатов оценки.
5. Анализ полученных результатов и выбор наилучшего варианта (или корректировка варианта, если он был один).
В настоящее время трудно привести примеры методик, в которых все этапы были бы проработаны равноценно.
- Введение. Основные понятия и определения Основные задачи теории систем.
- Краткая историческая справка.
- Основные понятия теории систем
- Основные понятия и определения Основное содержание первой лекции
- Понятие информации
- Открытые и закрытые системы
- Модель и цель системы
- Управление
- Информационные динамические системы
- Классификация и основные свойства единиц информации
- Системы управления
- Реляционная модель данных
- Виды информационных систем
- Классификация информационных систем
- Технические, биологические и др. Системы
- Детерминированные и стохастические системы
- Открытые и закрытые системы
- Хорошо и плохо организованные системы
- Классификация систем по сложности
- Лекция №4. Закономерности систем Целостность
- Интегративность
- Коммуникативность
- Эквифинальность
- Закон необходимого разнообразия
- Закономерность осуществимости и потенциальной эффективности систем
- Закономерность целеобразования
- Системный подход и системный анализ
- Лекция №5. Уровни представления информационных систем
- Методы и модели описания систем
- Качественные методы описания систем
- Количественные методы описания систем
- Лекция №6. Кибернетический подход к описанию систем
- 6.1. Задачи анализа топологии
- 6.2. Представление информации о топологии моделей
- 6.3. Переборные методы
- 6.4. Поиск контуров и путей по матрице смежности
- 6.5. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- 6.6. Поиск контуров и путей по матрице изоморфности
- 6.6. Сравнение алгоритмов топологического анализа
- 6.7. Декомпозиция модели на топологическом ранге неопределенности
- 6.8. Сортировка модели на топологическом ранге неопределенности
- 6.9. Нахождение сильных компонент графа
- Лекция №8. Теоретико-множественное описание систем
- Предположения о характере функционирования систем
- Система, как отношение на абстрактных множествах
- Временные, алгебраические и функциональные системы
- Временные системы в терминах «вход — выход»
- 1.2. Формы представления модели
- 1.2.1. Нормальная форма Коши
- 1.2.2. Системы нелинейных дифференциальных уравнений различных порядков
- 1.2.3. Графы
- 1.2.4. Гиперграфы
- Лекция №10. Динамическое описание систем
- Детерминированная система без последствий
- Детерминированные системы без последствия с входными сигналами двух классов
- Учет специфики воздействий
- Детерминированные системы с последствием
- Стохастические системы
- Агрегатное описание систем