logo
лекции по МОТС / Введение

6.2. Представление информации о топологии моделей

Представление топологии модели возможно в списочной и матричной форме. При организации программных средств чаще используется списочная форма. При больших размерностях одноуровневых сильно разряженных моделей она имеет преимущества по требуемой памяти и скорости работы алгоритмов топологического анализа. Однако для сильно связанных систем небольшой размерности или иерархических систем эффективнее испробовать алгоритмы, основанные на матричных формах, например на матрицах смежности.

В качестве иллюстрации на рис. 1.1. приведена диаграмма графа модели странного аттрактора Лоренца [93]. Эта форма представления позволяет эффективнее решать задачи выделения путей и ко­нтуров, связности, структурной управляемости и многие другие, чем в форме НФК и отчасти СНДУ.

Модель системы представляется ориентированным графом H=<G,H> с множеством переменных Х=x1, .... , xn, N - общее множество вершин, и множеством дуг G - упорядоченных пар номеров смежных вершин (i,j), G=(i,j)1, ... (i,j)n. Общее количество таких пар обозначено в приме­рах как Q.

Несмотря на всю компактность и удобство такой записи, на практике чаще используют матрицу смежности R = rij, показывающую наличие дуги между i-ой и j-ой вершинами.

Рис. 2.1. Модель странного аттрактора в форме ориентированного графа

Рис. 2.2. Модель системы в форме графа

Другим способом представления топологии является матрица изоморфности D, в строках которой представлены номера входящих (с плюсом) и выходящих (с минусом) дуг.

Для приведенного на рис. 2.2 примера матрицы смежности и изоморфности имеют вид:

Избыточность хранимой информации в матрице смежности (нулевые значения) компенсируют­ся простотой вычислительных алгоритмов и скоростью получения требуемой ин­формации из матрицы. Кроме того, наличие только двух значений 0 или 1, дает возможность использовать для ее представления битовые поля, что дает значительную экономию памяти, и при размерах системы порядка 100 элементов не уступает по затратам ресурсов на хранение матрицы изоморфности, при значительно более простых алгоритмов обработки информации. Использование матриц смежности, инцидентностей, достижимостей и др. имеет большое применение для алгоритмов топологи­ческого анализа СС НСУ [107].

Ориентированные графы (структурные схемы) обычно широко используются при описании линейных систем и систем с одновходовыми нелинейностями. Однако возникают некоторые затруднения при описании нелинейных систем, где нелиней­ные функции могут зависеть от нескольких переменных, например при описании операций умножения и деления.