6.9. Нахождение сильных компонент графа
Нахождение сильных компонентов графа широко используется в процессе декомпозиции исходной модели на подсистемы, приведение множества уравнений к блочному виду. Возможно, привести пример – размещение компонентов принципиальной схемы на плате и многое другое.
Наиболее простым является следующий алгоритм:
Для системы представленной на рис. 6.9, строим матрицу пересечений.
В матрице пересечений W, w i j =1, если есть путь и из i-й вершины в j-ю, и обратно.
Рис. 6.9. Диаграмма графа тестовой системы
Для получение матрицы пересечений необходимо получить матрицу достижимости и контрдостижимости:
Матрица достижимости R
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
Матрица контрдостижимости Q
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Для системы, представленной на рис. 6.9, матрица пересечений имеет вид.
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
| 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
| 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
|
Матрицу пересечений можно получить как P= R И Q.
В матрице пересечений выбираются блоки элементов с симметричным расположением 1 в строках и столбцах.
Заключение
Алгоритмы топологического анализа имеют очень важное значение, многие задачи исследования систем могут быть решены на топологическом уровне. Повышение эффективности всех стадий исследования системы возможно в первую очередь за счет учета топологических особенностей модели.
Оглавление
Введение. Основные понятия и определения 1
Основные задачи теории систем. 1
Краткая историческая справка. 3
ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ СИСТЕМ 7
Основные понятия и определения 12
Основное содержание первой лекции 12
Понятие информации 13
Открытые и закрытые системы 13
Модель и цель системы 13
Управление 14
Информационные динамические системы 14
Классификация и основные свойства единиц информации 15
Системы управления 16
Реляционная модель данных 17
Виды информационных систем 18
Классификация информационных систем 19
Технические, биологические и др. системы 19
Детерминированные и стохастические системы 19
Открытые и закрытые системы 20
Хорошо и плохо организованные системы 20
Классификация систем по сложности 22
Лекция №4. Закономерности систем 26
Целостность 26
Интегративность 27
Коммуникативность 27
Эквифинальность 28
Закон необходимого разнообразия 29
Закономерность осуществимости и потенциальной эффективности систем 29
Закономерность целеобразования 29
Системный подход и системный анализ 31
Лекция №5. Уровни представления информационных систем 34
Методы и модели описания систем 35
Качественные методы описания систем 35
Количественные методы описания систем 42
Лекция №6. Кибернетический подход к описанию систем 47
Лекция №8. Теоретико-множественное описание систем 84
Предположения о характере функционирования систем 84
Система, как отношение на абстрактных множествах 85
Временные, алгебраические и функциональные системы 87
Временные системы в терминах «ВХОД — ВЫХОД» 89
Лекция №10. Динамическое описание систем 104
Детерминированная система без последствий 104
Детерминированные системы без последствия с входными сигналами двух классов 105
Учет специфики воздействий 105
Детерминированные системы с последствием 106
Стохастические системы 106
Агрегатное описание систем 107
- Введение. Основные понятия и определения Основные задачи теории систем.
- Краткая историческая справка.
- Основные понятия теории систем
- Основные понятия и определения Основное содержание первой лекции
- Понятие информации
- Открытые и закрытые системы
- Модель и цель системы
- Управление
- Информационные динамические системы
- Классификация и основные свойства единиц информации
- Системы управления
- Реляционная модель данных
- Виды информационных систем
- Классификация информационных систем
- Технические, биологические и др. Системы
- Детерминированные и стохастические системы
- Открытые и закрытые системы
- Хорошо и плохо организованные системы
- Классификация систем по сложности
- Лекция №4. Закономерности систем Целостность
- Интегративность
- Коммуникативность
- Эквифинальность
- Закон необходимого разнообразия
- Закономерность осуществимости и потенциальной эффективности систем
- Закономерность целеобразования
- Системный подход и системный анализ
- Лекция №5. Уровни представления информационных систем
- Методы и модели описания систем
- Качественные методы описания систем
- Количественные методы описания систем
- Лекция №6. Кибернетический подход к описанию систем
- 6.1. Задачи анализа топологии
- 6.2. Представление информации о топологии моделей
- 6.3. Переборные методы
- 6.4. Поиск контуров и путей по матрице смежности
- 6.5. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- 6.6. Поиск контуров и путей по матрице изоморфности
- 6.6. Сравнение алгоритмов топологического анализа
- 6.7. Декомпозиция модели на топологическом ранге неопределенности
- 6.8. Сортировка модели на топологическом ранге неопределенности
- 6.9. Нахождение сильных компонент графа
- Лекция №8. Теоретико-множественное описание систем
- Предположения о характере функционирования систем
- Система, как отношение на абстрактных множествах
- Временные, алгебраические и функциональные системы
- Временные системы в терминах «вход — выход»
- 1.2. Формы представления модели
- 1.2.1. Нормальная форма Коши
- 1.2.2. Системы нелинейных дифференциальных уравнений различных порядков
- 1.2.3. Графы
- 1.2.4. Гиперграфы
- Лекция №10. Динамическое описание систем
- Детерминированная система без последствий
- Детерминированные системы без последствия с входными сигналами двух классов
- Учет специфики воздействий
- Детерминированные системы с последствием
- Стохастические системы
- Агрегатное описание систем