Основные понятия и определения Основное содержание первой лекции
В первой лекции были рассмотрены понятия: система, элемент, подсистема структура и связь, иерархия состояние, поведение, внешняя среда.
Под системой, понимается объект свойства которого не сводятся без остатка к свойствам составляющих его дискретных элементов (неаддитивность свойств). Интегративное свойство системы обеспечивает ее целостность, качественно новое образование по сравнению с составляющими ее частями.
Любой элемент системы можно рассматривать как самостоятельную систему (математическую модель, описывающую какой - либо функциональный блок, или изучаемой аспект), как правило более низкого порядка. Каждый элемент системы описывается своей функцией. Под функцией понимается вещественно-энергетические и информационные отношения между входными и выходными процессами. Если такой элемент обладает внутренней структурой, то его называют подсистемой. Такое описание может быть использовано при реализации методов анализа и синтеза систем. Это нашло отражение в одном из принципов системного анализа - законе системности, говорящим о том что любой элемент может быть либо подсистемой в некоторой системе либо, подсистемой среди множества объектов аналогичной категории. Элемент всегда является частью системы и вне ее не представляет смысла. Под структурой понимается внутренняя форма, взаимодействие и связь элементов в рамках данной системы.
Входы и выходы- материальные или информационные потоки входящие и выходящие из системы.
Цель системы. Состояние системы описывается рядом переменных x1..xn. Одна из переменных или группа переменных xi, должна поддерживаться в определенном значении xi=F(X,t) (или диапазоне значений), называемой целевой функцией.
- Введение. Основные понятия и определения Основные задачи теории систем.
- Краткая историческая справка.
- Основные понятия теории систем
- Основные понятия и определения Основное содержание первой лекции
- Понятие информации
- Открытые и закрытые системы
- Модель и цель системы
- Управление
- Информационные динамические системы
- Классификация и основные свойства единиц информации
- Системы управления
- Реляционная модель данных
- Виды информационных систем
- Классификация информационных систем
- Технические, биологические и др. Системы
- Детерминированные и стохастические системы
- Открытые и закрытые системы
- Хорошо и плохо организованные системы
- Классификация систем по сложности
- Лекция №4. Закономерности систем Целостность
- Интегративность
- Коммуникативность
- Эквифинальность
- Закон необходимого разнообразия
- Закономерность осуществимости и потенциальной эффективности систем
- Закономерность целеобразования
- Системный подход и системный анализ
- Лекция №5. Уровни представления информационных систем
- Методы и модели описания систем
- Качественные методы описания систем
- Количественные методы описания систем
- Лекция №6. Кибернетический подход к описанию систем
- 6.1. Задачи анализа топологии
- 6.2. Представление информации о топологии моделей
- 6.3. Переборные методы
- 6.4. Поиск контуров и путей по матрице смежности
- 6.5. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- 6.6. Поиск контуров и путей по матрице изоморфности
- 6.6. Сравнение алгоритмов топологического анализа
- 6.7. Декомпозиция модели на топологическом ранге неопределенности
- 6.8. Сортировка модели на топологическом ранге неопределенности
- 6.9. Нахождение сильных компонент графа
- Лекция №8. Теоретико-множественное описание систем
- Предположения о характере функционирования систем
- Система, как отношение на абстрактных множествах
- Временные, алгебраические и функциональные системы
- Временные системы в терминах «вход — выход»
- 1.2. Формы представления модели
- 1.2.1. Нормальная форма Коши
- 1.2.2. Системы нелинейных дифференциальных уравнений различных порядков
- 1.2.3. Графы
- 1.2.4. Гиперграфы
- Лекция №10. Динамическое описание систем
- Детерминированная система без последствий
- Детерминированные системы без последствия с входными сигналами двух классов
- Учет специфики воздействий
- Детерминированные системы с последствием
- Стохастические системы
- Агрегатное описание систем