logo
лекции по МОТС / Введение

Временные, алгебраические и функциональные системы

Временные системы. Если элементы одного из объектов систе­мы есть функции, например v: Тv®Av то этот объект называют функциональным. В случае, когда области определения всех функ­ций для данного объекта V одинаковы, т. е. каждая функция vÎV является отображением Т в A, v : Т®А, то Т называется индек­сирующим множеством для v, a A — алфавитом объекта Т. Если индексирующее множество линейно упорядочено, то его называ­ют множеством моментов времени. Функции, определенные на множествах моментов времени, принято называть (абстрактны­ми) функциями времени. Объект, элементами которого являются временные функции, называют временным объектом, а системы, определенные на временных объектах, — временными системами.

Особый интерес для исследования представляют системы, у которых элементы и входного и выходного объектов определе­ны на одном и том же множестве: ХÌАT и YÌBT. В этом случае под системой понимается отношение

Алгебраические системы. Другой путь наделения объектов системы математическими структурами состоит в определении одной или нескольких операций, относительно которых V стано­вится алгеброй. В самом простейшем случае определяется бинар­ная операция R : V*V®V и предполагается, что в V можно выделить такое подмножество W, зачастую конечное, что любой элемент vÎ V можно получить в результате применения операции R к элементам из W или к элементам, уже построенным из элементов множества Неподобным образом. В этом случае W на­зывают множеством производящих элементов или алфавитом объекта, а его элементы — символами, а элементы объекта V — словами. Если R есть операция сочленения, то слова — это просто последовательности элементов алфавита W.

Необходимо иметь в виду, что алфавит временного объекта — это не совсем то же самое, что алфавит алгебраичес­кого объекта. Для объектов с конечными алфавитами — это обычно одни и те же множества. Но как только алфавит стано­вится бесконечным, возникают трудности: множество производя­щих элементов и область функций времени оказываются различ­ными множествами, в общем случае даже разной мощности.

Итак, системой называется отношение на непустых (абстракт­ных) множествах:

SÌx{Vi, iÎI}.

Если множество индексов / конечно, то выражение (3.1) мож­но переписать в виде

SÌV1*V2*…*Vn. (3.2)

Пусть IxÌ I и IyÌ I образуют разбиение множества I, т. е. пусть IxÇIy =Æ и IxÈIy =I .

Множество Х= Ä{Vi. iÎIx,} называется входным объектом, а множество Y=Ä{Vi,iÎIy} - выходным объектом системы. Тогда система S определяется отношением

S Ì X* У (3.3)

и называется системой «вход — выход» («черный ящик»).

Если S является функцией

S : X®Y. (3.4)

то система называется функциональной.