Модель и цель системы
Понятие модели трактуется неоднозначно. В основе его лежит сходство процессов протекающих в реальной действительности и в заменяемым реальный объект модели. В философии, под моделью понимается широкая категория кибернетики, заменяющая изучаемый объект его упрощенным представлением, с целью более глубокого познания оригинала. Под математической моделью (в дальнейшим просто моделью) понимается идеальное математическое отражение исследуемого объекта.
Фундаментальные (детальные) модели, количественно описывающих поведение или свойства системы, начиная с такого числа основных физических допущений (первичных принципов), какое только является возможным. Такие модели предельно подробны и точны для явлений, которые они описывают.
Феноменологические модели используются для качественного описания физических процессов, когда точные соотношения неизвестны, либо слишком сложны для применения. Такие приближенные или осредненные модели обычно обоснованы физически и содержат входные данные, полученные из эксперимента или более фундаментальных теорий. Феноменологическая модель основывается на качественном понимании физической ситуации. При получении феноменологических моделей используются общие принципы и условия сохранения.
- Введение. Основные понятия и определения Основные задачи теории систем.
- Краткая историческая справка.
- Основные понятия теории систем
- Основные понятия и определения Основное содержание первой лекции
- Понятие информации
- Открытые и закрытые системы
- Модель и цель системы
- Управление
- Информационные динамические системы
- Классификация и основные свойства единиц информации
- Системы управления
- Реляционная модель данных
- Виды информационных систем
- Классификация информационных систем
- Технические, биологические и др. Системы
- Детерминированные и стохастические системы
- Открытые и закрытые системы
- Хорошо и плохо организованные системы
- Классификация систем по сложности
- Лекция №4. Закономерности систем Целостность
- Интегративность
- Коммуникативность
- Эквифинальность
- Закон необходимого разнообразия
- Закономерность осуществимости и потенциальной эффективности систем
- Закономерность целеобразования
- Системный подход и системный анализ
- Лекция №5. Уровни представления информационных систем
- Методы и модели описания систем
- Качественные методы описания систем
- Количественные методы описания систем
- Лекция №6. Кибернетический подход к описанию систем
- 6.1. Задачи анализа топологии
- 6.2. Представление информации о топологии моделей
- 6.3. Переборные методы
- 6.4. Поиск контуров и путей по матрице смежности
- 6.5. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- 6.6. Поиск контуров и путей по матрице изоморфности
- 6.6. Сравнение алгоритмов топологического анализа
- 6.7. Декомпозиция модели на топологическом ранге неопределенности
- 6.8. Сортировка модели на топологическом ранге неопределенности
- 6.9. Нахождение сильных компонент графа
- Лекция №8. Теоретико-множественное описание систем
- Предположения о характере функционирования систем
- Система, как отношение на абстрактных множествах
- Временные, алгебраические и функциональные системы
- Временные системы в терминах «вход — выход»
- 1.2. Формы представления модели
- 1.2.1. Нормальная форма Коши
- 1.2.2. Системы нелинейных дифференциальных уравнений различных порядков
- 1.2.3. Графы
- 1.2.4. Гиперграфы
- Лекция №10. Динамическое описание систем
- Детерминированная система без последствий
- Детерминированные системы без последствия с входными сигналами двух классов
- Учет специфики воздействий
- Детерминированные системы с последствием
- Стохастические системы
- Агрегатное описание систем