logo search
Rotation_3D[1]

Вместо заключения

Выше был рассмотрен достаточно простой с формальной точки зрения и в то же время интуитивно понятный математический объект как тензор конечного поворота. Мы надеемся, что наша статья приоткрыла для читателя завесу таинственности и непонятности в вопросе описания произвольных поворотов в трехмерном пространстве. Как было сказано во введении, мы намеренно уклонились от вычислительных аспектов данной проблемы, желая разбудить у читателя интуицию. В следующей статье мы расскажем о координатной форме представления тензора поворота – матрице поворота. Что позволит читателю реализовать в программном коде примеры из данной статьи и множество собственных еще не родившихся идей. При этом он будет делать это, мы надеемся, с глубоким пониманием происходящего.

Тем не менее, читатель уже сейчас имеет такое мощное вычислительное средство как кватернион поворота. Этот объект интуитивно также прост для восприятия, как и тензор поворота. На сегодняшний день он является реальным конкурентом классическим матрицам поворота. Поэтому для всестороннего понимания поворотов читатель должен в итоге уметь свободно обращаться с двумя объектами: тензором поворота и кватернионом поворота.