21. Эксцентриситет и директрисы линий второго порядка.
Директриссой эллипса ( ) соотв. фокусу наз-ся прямая, перепендикулярная большей оси эллипса, расположенной в одной полуплоскости с фокусом и на расстоянии .
Теорема. Отношение расст-я от любой т. эл-са до соотв. D – есть вел-на постоянная =e. =e.
Директриссой гиперболы соотв. фокусу наз-ся прямая, перепендикулярная прямой, соел. фокусы гип-лы и на расст. от центра гип-лы.
Теорема. Отношение расстояния от любой т. гип-лы до фокуса к расстоянию от этой т. до соотв. D – есть вел-на постоянная=e.
Величина e=c/a – называется эксцентриситет, c=
22.Уравнения линий второго порядка в полярных координатах.
Рассмотрим эллипс или параболоид. Выберем реш-я полярную сис-му коорд.так , чтобы ее полюс совпал с левым фокусом, а пол-ю ось направим вдоль большей полуоси эл-са или оси симметрии параболы.
Проведем дирректриссу, QF=p. Возьмем M(r,φ), =e, FM=r
pM=PR+RM=QF=RM=p+r*
= , r=p+e*r*cos ,
r=
r= — правая
→ гипербола.
r= — левая
- 1.Направленный отрезок и вектор. Длина отрезка, деление отрезка в данном отношении.
- 2.Векторы и линейные операции над ними.
- 3.Проекция вектора на ось.
- 4.Базис. Координаты вектора.
- 5..Аффинные координаты. Декартовы прямоугольные координаты.
- 6..Скалярное произведение векторов и его свойства.
- 7.. Векторное произведение векторов и его свойства.
- 8..Смешанное произведение векторов и его свойства.
- 9.Преобразование декартовых прямоугольных координат на плоскости.
- 10.Линии на плоскости и их уравнения в координатах. Параметрические уравнения линии.
- 11.Полярные координаты.
- 12.Общее уравнение прямой на плоскости, геометрический смысл его коэффициентов.
- 13.Уравнение прямой с угловым коэффициентом. Уравнение прямой в отрезках.
- 15.Взаимное расположение пары прямых на плоскости и угол между ними.
- 16.Расстояние от точки до прямой.
- 17. Уравнение пучка прямых
- 18.Канонические уравнения линий второго порядка.
- 1 9.Каноническое уравнение эллипса (с выводом уравнения).
- 20.Канонические уравнения гипербола и параболы.
- 21. Эксцентриситет и директрисы линий второго порядка.
- 23. Приведение уравнения второго порядка к каноническому виду.
- 24.Уравнения прямой в пространстве.
- 25.Различные виды уравнений плоскости.
- 26.Взаимное расположение прямой и плоскости в пространстве.
- 27.Взаимное расположение прямых в пространстве.
- 28.Взаимное расположение плоскостей в пространстве.
- 29.Нормальное уравнение плоскости.
- 30.Уравнение пучка плоскостей.
- 32.Эллипсоид, конус и гиперболоиды.
- 33.Параболоиды и цилиндрические поверхности.
- 34.Общее понятия о евклидовой, аффинной и проективной геометриях.
- 35. Основные понятия неевклидовой геометрии.
- 36.Многомерное пространство и координаты в нем.
- 37.Подпространства и выпуклые множества в многомерном пространстве. Выпуклые многогранники.
- 38.Подпространство, заданное системой линейных уравнений. Выпуклые подмножества и системы линейных неравенств.
- 39. Матрицы, виды матриц. Линейные операции над матрицами, их свойства. Умножение матриц, его свойства. Транспонирование матриц.
- 40.Определители матриц 1 и 2 порядков. Миноры и алгебраические дополнения элементов квадратных матриц. Вычисления определителя разложением по элементам строки или столбца.
- 41.Свойства определителей.
- 42. Вычисление определителей с применением свойств определителей.
- 44.Нахождение обратной матрицы методом «прямоугольника».
- 45. Элементарные преобразования матриц.
- 46.Ранг матрицы.
- 47.Метод обратной матрицы для решения слу. Метод обратной матрицы
- 49.Правило Крамера.
- 50. Метод Гаусса, прямой и обратный ход.
- 51. Теорема Кронекера-Капелли
- 52. Системы однородных линейных уравнений, фундаментальная система решений.
- 53. Неоднородные системы линейных уравнений. Структура их решений.
- 54. Системы линейных неравенств и геометрическое представление их решений.
- 56.Модуль и аргумент. Геометрическая интерпретация. Формула Муавра.
- 57. Извлечение корней комплексного числа. Корни из единицы.
- 58. Понятие многочлена и операции над ним.
- 59. Корни многочлена. Основная теорема алгебры Разложение многочлена на простые множители.
- 60. Многочлены с действительными коэффициентами.