4.Базис. Координаты вектора.
Б азисом на прямой наз-ся некоторый ненулевой вектор. Базисом на плоскости н аз-ся упорядоченная пара ненулевых коллинеарных векторов на пл-ти. Базисом в пространстве наз. упорядоченныю тройку 3х некомпланарных векторов. Векторы наз. компланарными, если они лежат в 1-ой плоскости или в ||-ных плоскостях.
Любой вектор на плоскости может быть разложен по векторам базиса на плоскости. Любой вектор в пространстве может быть разложен по векторам базиса в пространстве.
ОС=OA+OB, OA=x*i, OB=j*y, OC=xi+yj. Числа х,у наз-ся координатами вектора ОС в данном базисе
Длиной вектора называется арифметическое значение квадратного корня и скалярного квадрата.
Теорема: Пусть (а,в) – базис на пл-ти, тогда любой в-р с, лежащий на пл-ти можно предст. в виде с=αа+βв.
Теорема: Пусть (а,в,с) – базис в пр-ве, тогда люб. в-р. d модет быть записан в виде: d= αа+βв+γc.
Св-ва коорд. в-ра. 1) Коорд. нул. в-ра в любом базисе = нули. 2) коорд. в-ра в зад. базисе опред-ны однозначно.3) При умн-и в-ра на число, его коорд. умн-ся на это число. 4) При сложении вект. их коорд, заданные в одном и том же базисе, складываются.
- 1.Направленный отрезок и вектор. Длина отрезка, деление отрезка в данном отношении.
- 2.Векторы и линейные операции над ними.
- 3.Проекция вектора на ось.
- 4.Базис. Координаты вектора.
- 5..Аффинные координаты. Декартовы прямоугольные координаты.
- 6..Скалярное произведение векторов и его свойства.
- 7.. Векторное произведение векторов и его свойства.
- 8..Смешанное произведение векторов и его свойства.
- 9.Преобразование декартовых прямоугольных координат на плоскости.
- 10.Линии на плоскости и их уравнения в координатах. Параметрические уравнения линии.
- 11.Полярные координаты.
- 12.Общее уравнение прямой на плоскости, геометрический смысл его коэффициентов.
- 13.Уравнение прямой с угловым коэффициентом. Уравнение прямой в отрезках.
- 15.Взаимное расположение пары прямых на плоскости и угол между ними.
- 16.Расстояние от точки до прямой.
- 17. Уравнение пучка прямых
- 18.Канонические уравнения линий второго порядка.
- 1 9.Каноническое уравнение эллипса (с выводом уравнения).
- 20.Канонические уравнения гипербола и параболы.
- 21. Эксцентриситет и директрисы линий второго порядка.
- 23. Приведение уравнения второго порядка к каноническому виду.
- 24.Уравнения прямой в пространстве.
- 25.Различные виды уравнений плоскости.
- 26.Взаимное расположение прямой и плоскости в пространстве.
- 27.Взаимное расположение прямых в пространстве.
- 28.Взаимное расположение плоскостей в пространстве.
- 29.Нормальное уравнение плоскости.
- 30.Уравнение пучка плоскостей.
- 32.Эллипсоид, конус и гиперболоиды.
- 33.Параболоиды и цилиндрические поверхности.
- 34.Общее понятия о евклидовой, аффинной и проективной геометриях.
- 35. Основные понятия неевклидовой геометрии.
- 36.Многомерное пространство и координаты в нем.
- 37.Подпространства и выпуклые множества в многомерном пространстве. Выпуклые многогранники.
- 38.Подпространство, заданное системой линейных уравнений. Выпуклые подмножества и системы линейных неравенств.
- 39. Матрицы, виды матриц. Линейные операции над матрицами, их свойства. Умножение матриц, его свойства. Транспонирование матриц.
- 40.Определители матриц 1 и 2 порядков. Миноры и алгебраические дополнения элементов квадратных матриц. Вычисления определителя разложением по элементам строки или столбца.
- 41.Свойства определителей.
- 42. Вычисление определителей с применением свойств определителей.
- 44.Нахождение обратной матрицы методом «прямоугольника».
- 45. Элементарные преобразования матриц.
- 46.Ранг матрицы.
- 47.Метод обратной матрицы для решения слу. Метод обратной матрицы
- 49.Правило Крамера.
- 50. Метод Гаусса, прямой и обратный ход.
- 51. Теорема Кронекера-Капелли
- 52. Системы однородных линейных уравнений, фундаментальная система решений.
- 53. Неоднородные системы линейных уравнений. Структура их решений.
- 54. Системы линейных неравенств и геометрическое представление их решений.
- 56.Модуль и аргумент. Геометрическая интерпретация. Формула Муавра.
- 57. Извлечение корней комплексного числа. Корни из единицы.
- 58. Понятие многочлена и операции над ним.
- 59. Корни многочлена. Основная теорема алгебры Разложение многочлена на простые множители.
- 60. Многочлены с действительными коэффициентами.