36.Многомерное пространство и координаты в нем.
Многомерное пространство, пространство, имеющее число измерений (размерность) более трёх. Обычное евклидово пространство, изучаемое в элементарной геометрии, трёхмерно; плоскости — двумерны, прямые — одномерны. Возникновение понятия Простейшими Многомерное пространство являются n-мерные евклидовы пространства, где n может быть любым натуральным числом. Подобно тому, как положение точки обычного евклидова пространства определяется заданием трёх её прямоугольных координат, «точка» n-мерного евклидова пространства задаётся n «координатами» x1, x2, ..., xn (которые могут принимать любые действительные значения); расстояние r между двумя точками M(x1, x2, ..., xn) и М"(у1, y2, ..., yn) определяется формулой аналогичной формуле расстояния между двумя точками обычного евклидова пространства. С сохранением такой же аналогии обобщаются на случай n-мерного пространства и другие геометрические понятия. Так, в Многомерное пространство рассматриваются не только двумерные плоскости, но и k-мерные плоскости (k < n), которые, как и в обычном евклидовом пространстве, определяются линейными уравнениями (или системами таких уравнений). Понятие n-мерного евклидова пространства имеет важные применения в теории функций многих переменных, позволяя трактовать функцию n переменных как функцию точки этого пространства и тем самым применять геометрические представления и методы к изучению функций любого числа переменных (а не только одного, двух или трёх). Это и было главным стимулом к оформлению понятия n-мерного евклидова пространства.Вообще n-мерным пространством называется топологическое пространство, которое в каждой своей точке имеет размерность n. В наиболее важных случаях это означает, что каждая точка обладает окрестностью, гомеоморфной открытому шару n-мерного евклидова пространства.
- 1.Направленный отрезок и вектор. Длина отрезка, деление отрезка в данном отношении.
- 2.Векторы и линейные операции над ними.
- 3.Проекция вектора на ось.
- 4.Базис. Координаты вектора.
- 5..Аффинные координаты. Декартовы прямоугольные координаты.
- 6..Скалярное произведение векторов и его свойства.
- 7.. Векторное произведение векторов и его свойства.
- 8..Смешанное произведение векторов и его свойства.
- 9.Преобразование декартовых прямоугольных координат на плоскости.
- 10.Линии на плоскости и их уравнения в координатах. Параметрические уравнения линии.
- 11.Полярные координаты.
- 12.Общее уравнение прямой на плоскости, геометрический смысл его коэффициентов.
- 13.Уравнение прямой с угловым коэффициентом. Уравнение прямой в отрезках.
- 15.Взаимное расположение пары прямых на плоскости и угол между ними.
- 16.Расстояние от точки до прямой.
- 17. Уравнение пучка прямых
- 18.Канонические уравнения линий второго порядка.
- 1 9.Каноническое уравнение эллипса (с выводом уравнения).
- 20.Канонические уравнения гипербола и параболы.
- 21. Эксцентриситет и директрисы линий второго порядка.
- 23. Приведение уравнения второго порядка к каноническому виду.
- 24.Уравнения прямой в пространстве.
- 25.Различные виды уравнений плоскости.
- 26.Взаимное расположение прямой и плоскости в пространстве.
- 27.Взаимное расположение прямых в пространстве.
- 28.Взаимное расположение плоскостей в пространстве.
- 29.Нормальное уравнение плоскости.
- 30.Уравнение пучка плоскостей.
- 32.Эллипсоид, конус и гиперболоиды.
- 33.Параболоиды и цилиндрические поверхности.
- 34.Общее понятия о евклидовой, аффинной и проективной геометриях.
- 35. Основные понятия неевклидовой геометрии.
- 36.Многомерное пространство и координаты в нем.
- 37.Подпространства и выпуклые множества в многомерном пространстве. Выпуклые многогранники.
- 38.Подпространство, заданное системой линейных уравнений. Выпуклые подмножества и системы линейных неравенств.
- 39. Матрицы, виды матриц. Линейные операции над матрицами, их свойства. Умножение матриц, его свойства. Транспонирование матриц.
- 40.Определители матриц 1 и 2 порядков. Миноры и алгебраические дополнения элементов квадратных матриц. Вычисления определителя разложением по элементам строки или столбца.
- 41.Свойства определителей.
- 42. Вычисление определителей с применением свойств определителей.
- 44.Нахождение обратной матрицы методом «прямоугольника».
- 45. Элементарные преобразования матриц.
- 46.Ранг матрицы.
- 47.Метод обратной матрицы для решения слу. Метод обратной матрицы
- 49.Правило Крамера.
- 50. Метод Гаусса, прямой и обратный ход.
- 51. Теорема Кронекера-Капелли
- 52. Системы однородных линейных уравнений, фундаментальная система решений.
- 53. Неоднородные системы линейных уравнений. Структура их решений.
- 54. Системы линейных неравенств и геометрическое представление их решений.
- 56.Модуль и аргумент. Геометрическая интерпретация. Формула Муавра.
- 57. Извлечение корней комплексного числа. Корни из единицы.
- 58. Понятие многочлена и операции над ним.
- 59. Корни многочлена. Основная теорема алгебры Разложение многочлена на простые множители.
- 60. Многочлены с действительными коэффициентами.