ДИФГЕОМ-2011 февральПособие 19
10. Найти точки на кривой , в которых бинормаль параллельна плоскости .
Решение.
Радиус-вектор кривой .
Касательный вектор кривой (вектор скорости) .
Вектор ускорения кривой
В качестве направляющего вектора бинормали возьмем вектор . Его координаты
.
Условие параллельности прямой с направляющим вектором и плоскости есть . В нашем случае имеем , или .
Получаем или .
При значении параметра кривая не определена.
При точка кривой имеет координаты .
Содержание
- Печатается по решению кафедры математического анализа и геометрии
- Содержание
- Предисловие
- Введение
- §1. Понятие кривой, ее гладкость и параметризации
- §2. Касательная к кривой на плоскости и в пространстве. Угол между кривыми. Нормаль к кривой на плоскости и нормальная плоскость
- §3. Сопровождающий трехгранник кривой (трехгранник Френе)
- §4. Длина кривой. Естественная параметризация кривой.
- §5. Формулы Френе. Кривизна и кручение кривой.
- §6.Кинематический смысл кривизны и кручения
- §7. Вычисление кривизны и кручения в произвольной параметризации.
- §8. Задачи с решениями.
- 1. Доказать эквивалентность двух параметризованных кривых
- 3. Кривая в пространстве задана одним из способов: параметрически или в виде пересечения поверхностей. Выяснить расположение кривой в пространстве и по возможности нарисовать ее.
- 4. Кривая на плоскости задана одним из трех способов: параметрически, в виде графика функции или неявно. Написать уравнения касательной и нормали в данной точке.
- 5. Найти угол между кривыми в точке их пересечения:
- 6. Напишите уравнение касательной прямой и нормальной плоскости кривой , заданной параметрически в трехмерном пространстве, при :
- 7. Кривая задана как пересечение двух поверхностей:
- 8. Найти векторы канонического репера кривой
- 9. Кривая задана параметрическими уравнениями
- 10. Найти точки на кривой , в которых бинормаль параллельна плоскости .
- 11. Даны параметрические уравнения кривой на плоскости
- 12. Даны параметрические уравнения двух кривых на плоскости или в пространстве, проходящих через общую точку. Определить порядок касания кривых в этой точке.
- 14. Даны параметрические уравнения кривой на плоскости или в пространстве. Записать кривую через натуральный параметр s. Выяснить длину вектора r’(s) и направление вектора r”(s).
- 16. Даны параметрические уравнения кривой на плоскости или в пространстве. Найти кривизну и кручение кривой, не переходя к натуральному параметру.
- § 9. Задачи для самостоятельного решения.
- § 10. Тестовая работа по дифференциальной геометрии кривых
- Вариант ab.
- § 11. Методические указания по изучению темы дифференциальная геометрия поверхностей в трехмерном пространстве.
- Тема 1. Способы задания поверхностей. Касательная плоскость и нормаль к поверхности.
- Поверхность в пространстве задана одним из трех способов: параметрически, в виде графика функции или неявно. Задать ее другими оставшимися способами.
- Поверхность в пространстве задана одним из трех способов: параметрически, в виде графика функции или неявно. Написать уравнения касательной и нормали в данной точке.
- Тема 2. Касание поверхностей.
- Даны параметрические уравнения поверхности. Найти какую-нибудь поверхность, имеющую с данной поверхностью в данной точке касание 1, 2, 3 порядка.
- Даны параметрические уравнения двух поверхностей, проходящих через общую точку. Определить порядок касания поверхностей в этой точке.
- Тема 3. Первая квадратичная форма поверхности.
- Поверхность задана параметрически. Найти первую квадратичную форму поверхности.
- С помощью первой квадратичной формы найти длину кривой на поверхности, угол между кривыми и площадь области на поверхности.
- Тема 4. Вторая квадратичная форма поверхности. Полная и средняя кривизны поверхности.
- Тема 5. Первая и вторая квадратичные формы поверхности. Гауссова и средняя кривизны поверхности.
- § 12. Содержание курса Дифференциальная геометрия
- 2. Теория кривых в евклидовом пространстве
- 3. Теория поверхностей в евклидовом пространстве
- Литература