Дифференцирование в линейных нормированных пространствах
Интеграл
Пусть F -- абстрактная функция действительного аргумента t со значениями в банаховом пространстве У. Если F задана на отрезке [а, b], то можно определить интеграл функции F по отрезку [а,b]. Этот интеграл понимается как предел интегральных сумм
,
отвечающих разбиениям
ф = е0Бе1Б ююю Бет = иб олхелбел+1ъб
при условии, что max(tk+1-tk) 0. Интеграл (представляющий, собой, очевидно, элемент из Y) обозначается символом
Рассуждения, в значительной мере аналогичные проводимым для функций, принимающих скалярные значения, показывают, что интеграл от функции, непрерывной на отрезке, существует; при этом он обладает свойствами обычного риманова интеграла.
Содержание
- Введение
- Основные понятия
- Сильный дифференциал (дифференциал Фреше)
- Слабый дифференциал (дифференциал Гато)
- Формула конечных приращений
- Связь между слабой и сильной дифференцируемостью
- Дифференцируемые функционалы
- Абстрактные функции
- Интеграл
- Производные высших порядков
- Дифференциалы высших порядков
- Формула Тейлора
- Заключение
Похожие материалы
- 1.4.4. Нормированные линейные пространства
- 8.4. Нормированные пространства
- Линейные нормированные пространства Основные понятия и примеры
- Изоморфные и изометричные линейные нормированные пространства
- Компактность в линейных нормированных пространствах
- Линейные нормированные пространства
- Линейное пространство. Аксиомы линейного пространства. Нормированное пространство. Банаховы пространства.
- § 2. Нормированные линейные пространства
- 18.Метрические, линейные, нормированные, евклидовы пространства.