logo search
Системы, эквивалентные системам с известным типом точек покоя

5. Применение теоремы об эквивалентности дифференциальных систем

Получаем где - любая нечетная непрерывная функция.

Наряду с дифференциальной системой (1)

рассмотрим возмущенную систему (2), где - любая непрерывная нечетная функция. Известно по [3], что дифференциальная система (3)

эквивалентна возмущенной системе

(4), где непрерывная скалярная нечетная функция удовлетворяющая уравнению

Так как выше уже показано, что функция где {есть первый интеграл} удовлетворяет этому уравнению, то справедлива следующая теорема.

Теорема1.

Система (1) эквивалентна системе (2) в смысле совпадения отражающей функции.

Так как система (1) имеет две особые точки, в каждой из которых находится центр, то и система (2) имеет центры в этих точках.