3.3. Вероятность произведения событий.
Определение. Два события называются независимыми, если вероятность появления одного из них не зависит от того, произошло или нет другое. В противном случае события называются зависимыми.
События А1, А2, …, Аn называются независимыми, если каждые два из этих событий являются независимыми.
Определение. Условной вероятностью события А при условии В называется вероятность происхождения события А, при условии, что В уже произошло. Обозначается P(A/B)
Примеры.
1) На карточках разрезной азбуки написано слово «ФИЛОЛОГИЯ». Последовательно извлекают две карточки.
Событие В = «1-я карточка с буквой О», событие А = «2-я карточка с буквой О». Найдём условные вероятности события А при условии, что событие В уже произошло и при условии, что событие В не произошло (т.е.произошло событие ): .
Так как ,то А и В – зависимые события.
2) Пусть испытание состоит в извлечении карточек и возвращении их обратно. События К = «1-я карточка с буквой О» и D=«2-я карточка с буквой О». являются независимыми, так как появление буквы О на второй извлечённой карточке не зависит от того, появилась или нет буква О при извлечении первой карточки: .
Т2.1. Вероятность произведения двух зависимых событий равна произведению вероятности одного из этих событий на условную вероятность другого, при условии, что первое уже произошло.
Для нескольких попарно зависимых событий А1,А2,…Аn:
Т2.2. Вероятность произведения независимых событий равна произведению их вероятностей
Примеры.
Для расчёта памяти автомата, распознающего устную речь, и построения алгоритма его работы приходится вычислять вероятность совпадения хотя бы одной из словоформ обрабатываемого текста с соответствующей лексемой, заданной в словаре автомата.
а). Выбрано два одинаковых по объёму отрывка текста, из каждого отрывка произвольно выбирается слово. Нужно определить, что хотя бы одно из двух выбранных слов будет местоимением он, если согласно данным частотного словаря, значение статистической вероятности появления местоимения он в тексте равно 0,0099.
б). Выбрано десять одинаковых по объёму отрывков текста,
из каждого отрывка произвольно выбирается слово. Найти вероятность события D = «Хотя бы одно из десяти выбранных слов текста будет местоимением он».
- Часть1. Тематический план дисциплины
- Часть 2. Конспекты лекций 8
- Часть 3. Вопросы и задания для практических работ. 79
- Часть 4. Задания для самостоятельной работы 92
- Часть 5. Лабораторные работы 97
- Часть1. Тематический план дисциплины «Основы математической обработки информации»
- Часть 2. Конспекты лекций
- 1.1. Исторические периоды развития математики.
- 1.2. Основы теории множеств
- 1.2.1. Начальные понятия теории множеств.
- 2.1.3. Основные понятия комбинаторики
- 2) Перестановка из n элементов – это размещение из n элементов по n.
- 2.2. Начальные понятия теории вероятностей
- 2.2.2. Определения вероятности событий
- 3.1. Действия над событиями
- 3.2. Вероятность суммы событий
- 3.3. Вероятность произведения событий.
- 3.4. Вычисление вероятности цепочек языковых элементов.
- 3.5. Формула полной вероятности. Формула Байеса.
- 1 H2) Формула полной вероятности.
- 3.6. Теорема Бернулли
- 3.7. Вероятностное моделирование порождения текста.
- 3.8. Предельные теоремы в схеме Бернулли
- 4.1. Случайная величина (св). Начальные понятия.
- 4.2. Функция распределения св (интегральная функция распределения) f(X)
- 4.3. Функция плотности вероятности нсв f(X)
- 4.4. Числовые характеристики св
- 4.5. Законы распределения случайных величин.
- 1) Биномиальный закон распределения.
- 2) Закон Пуассона
- 3) Нормальное распределение (закон Гаусса)
- 6. Вероятность попадания нсв х в заданный промежуток
- 7. Логнормальное распределение
- 5.1. Система двух случайных величин (двумерная св) (1 час)
- 5.1.1. Начальные понятия.
- 5.1.2. Операции над независимыми случайными величинами
- 5.1.3. Числовые характеристики системы двух св
- 5.2. Предельные теоремы теории вероятностей: Закон больших чисел, Центральная предельная теорема и их значение для лингвистического эксперимента.(1 час)
- 5.2.1. Теорема Чебышева для среднего арифметического случайных величин.
- 6.1. Предмет математической статистики. Генеральная и выборочная совокупность.
- 6.2. Статистическое распределение выборки и его графическое изображение
- 6.2.1. Дискретный статистический ряд
- 6.2.2. Интервальный статистический ряд
- 6.3. Числовые характеристики статистического распределения
- Лекция 7. Элементы теории статистических оценок и проверки гипотез.
- 7.1 Статистические оценки параметров распределения и их свойства. Оценка параметров генеральной совокупности по выборке
- 7.1.1. Свойства статистических оценок:
- 7.1.2. Точечные оценки математического ожидания, дисперсии и вероятности.
- 7.1.3. Интервальное оценивание параметров.
- 7.1.4. Доверительные интервалы для параметров нормального распределения
- 7.1.5. Число степеней свободы
- 7.1.7. Определение минимально достаточного объёма выборки в грамматических, фонетико-фонологических и лексикологических исследованиях.
- 7.2. Проверка статистических гипотез. Исследование вероятностных свойств языка и статистики текста с помощью метода гипотез.
- 7.2. Проверка статистических гипотез.
- 7.2.1. Статистические гипотезы.
- 7.2.2. Статистический критерий
- 4.2.3. Принцип проверки статистических гипотез
- 7.2.4. Ошибки при проверке гипотез
- 7.2.5. Проверка лингвистических гипотез с помощью параметрических критериев.
- 7.2.6. Проверка гипотез с помощью непараметрических критериев.
- Часть 3. Вопросы и задания для практических работ.
- I. Элементы комбинаторики.
- Часть 4. Задания для самостоятельной работы
- 1. Графический способ.
- 2. Критерий асимметрии и эксцесса.
- 3. Критерий Колмогорова-Смирнова.
- 4. Критерий Пирсона
- Приложение 1. Значения интегральной функции Лапласа
- Приложение 2. Критические значения ( распределение Пирсона)